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GENERAL INTRODUCTION




BACKGROUND

Recent engine advances, the upsurge In business flying, and general affluence
have greatly accelerated the development of new and altered models of general avia-
Tion alrcraft. These developments follow the traditional industry pattern of ev-
olutionary change rather than revolutionary change. For example, a particular
mode! may not be-selling as well as expected, so it is determined that offering
the aircraft with additional power would increase its sales appeal. It is then
up to the company's engineering department fo accomplish this refitting with a
minimum of expense. There are the obvious structural modifications to make, The
weight and. balance fto check, and then a check flight to determine whether the
ride and handling characteristics remain, according to the subjective opinion of
the company pilot, satisfactory. I+ is, of course, not possible fto explore, in
This type of flight test program, all possible flight modes and conditions so
that one may omit tests at a condition which formerly was not uncomfortable or
unsafe but has, because of the changes become so. This seldom happens of course,
but place an aircraft with a larger engine in the hands of an inexperienced pilot,
and he will probably be surprised that the periods of the longitudinal short pe-
riod and dutch roll modes increase and their damping decreases; similarly, it is
seldom expected by the novice that moving the engine to the wing and adding a
second engine may, because of the nacelle design, give a serious pitch-up condi-
tion at high angles of attack or that providing adequate static longitudinal
stability or weathercock stability at some particular flight condition does not
guarantee acceptable dynamic characteristics. Yet these things can, given suf-
ficient and reliable analytical and experimental data, be forecast quite accu-
rately and can be included in the pilot's handbook.

To expect the manufacturer of light aircraft to carry out the comprehensive
preliminary design analyses, the extensive wind tunne! tests, and the exhaustive
flight tests that were performed for the C-5A, for example, for each of his new
aircraft is not being economically reatistic. |f one could, however, supply the
designer of light aircraft with simple-to-use, accurate means of predicting all
aspects of the flight performance of his airplane, this would go a long way to-
ward enabling tThese manufacturers to provide safer, more enjoyable aircraft more
economical ly.

Despite more than 50 years of scientific study, much of the preliminary
design is still an art. Desirable handling qualities, for example, are still
largely unquantified. The usual procedure is fo have an experienced pilot decide
whether an airplane handles "satisfactorily." Little effort has been made until
recently to determine--by a series of the best available quantitative fests—-
those control forces and response rates with which a human is confortable and
the limiting aircraft accelerations, oscillatory amplitudes, and frequencies for
acceptable riding qualities and then incorporating this information into a de-
termination of the geometric, inertial, and power characteristics necessary to
achieve them.

Another major problem in [ight aircraft design is the diversity and frag-
mentation of reliable experimental and analytical information. In an attempt
to contribute to a solution of this problem, the National Aeronautics and Space
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Administration supported a review of its published research since 1940 (Refs. |,
2, 3) with a view toward identifying those items of pertinence fo light aircraft
design. The present study is an in-depth review, selection, and extension of that
portion of this information and certain other information specifically related

to the handling and riding qualities of light aircraft. It is intended to serve
as a compilation of applicable, available experimental data as well as modern
analysis procedures for those interested in these aspects of light aircraft design.



OBJECTIVES AND ORGANIZATION

This work was undertaken with the intention of providing a recent engineer-
ing graduate with sufficient understanding, information, and procedures to permit
him to predict, with reasonable accuracy, certain riding and handling character-
istics of projected light aircraft. To facilitate the presentation, the discus~
sion is limited, for the most part, to those facets of the riding and handling
qualities which have a common basis: they trace their origin to the general
dynamical behavior of the airframe and its components. This approach takes ad-
vantage of the fact that few recent students have not at some time during their
col legiate careers seen derived the equations of motion of a rigid body in space
and the solution of a system of linear differential equations by the method of
Laplace Transforms. Recent graduates are also generally familiar with some of
the vocabulary of feedback control systems analysis. The present work, therefore,
seeks to build upon this foundation in elaborating modern techniques for predict-
ing essential features of the riding and handling qualities of light aircraft.

As a consequence of this choice, however, many perfectly respectable probiem
areas and effective analysis techniques are not discussed. For these omissions
the authors request the reader's forebearance.

The work begins with a discussion of the origin of and basis for riding
and handling qualities criteria and how these are distinguished from other fam-
iliar criteria, termed here control capabilifty. This section outlines the more
familiar handling qualities design and evaluation procedure, that based on con-
trol forces and deflections. The relation between such methods and those de-
rived from dynamical considerations is indicated. Next a section reviews briefly,
in qualitative terms, the derivation of the linearized equations of motion and
the usual methods for analyzing the stability of their solutions. Appendices
detail these procedures for those unfamiliar with them.

These sections are intented fo provide a basis for appreciating the use
which may be made of the data presented in the literature review and that gener-
ated during the present investigation. The first portinn of the review is basi-
cally a compilation of those techniques reported in the literature which the
authors regard as most suitable for the calculation of aircraft stability deriv-
atives if given the aircrafit's geometry. In preparation is a computer program
for performing these calculations. One need then supply only the airframe geo-

metric and inertial parameters and the program will provide numerical values of
all the derivatives. This program, along with typicai resuits, will be available
as part of a follow-on report which will discuss test and data reduction tech-

niques for exfracting the values of stability derivatives from flight data. A
short section discusses what is known generally about the effect of appiications
of power to the values of the individual stability derivatives.

The next portion is concerned with the relation among the stability deriv-
atives, the airframe geometry and mass disfribution, the dynamic pressure, and
the control forces and control deflections. Included in this discussion of
handling qualities are current views of desirable values as represented by the

FAR and military specifications.




Information on typical values of |ight aircraft inertial characteristics
and methods of computing them are also included as a section of the literature
review. The ratio of aerodynamic control moment to aircraft moment of inertia,
of course, is the primary factor in determining the responsiveness of an aircraft
tTo control surface deflections; hence, it seemed desirable to provide suitable
information to permit one to make estimates of these characteristics.

Only two conditions involving significant departures from small pertubations
are ftreated: stall and spin. These are included to indicate the state of know-
ledge regarding some of the |imits of the small pertubation analysis.

Finally, a section reviews the information available on the anthopological
basis for riding and handiing evaluations by human pilots. Included is a new
procedure for estimating the riding qualities in terms of the airframe dynamics.

Following the literature review are results of computer studies measuring
the sensitivity of aircraff motions to variations in individual stability de-
rivatives. It is, of course, not possible to vary these derivatives in this
fashion physically but these studies do indicate those derivatives which influ-
ence the motion significantly and must, therefore, be determined with great ac-
curacy. More approximate values are quite acceptable for derivatives which do
not strongly affect the motion.

A limited number of more elaborate computer studies are also presented.
For these studies all fthe derivatives which depend upon a given geometric vari-
ation are varied appropriately. One can then see the changes in motion which
result from a given change in airframe geometfry.

For the sake of completeness, Bode plots of the principal longitudinal and
lateral +transfer functions are then provided, using the original stability de-
rivative values for the example airplane. Some persons find such plots very
helpful in visualizing aircraft dynamic responses.

The appendices present derivations of the equations of motion, transforma-
tion of these equations to the frequency domain, a computer program for evaluat-
ing the constants in the transfer functions given the aircraft geometry and
inertia, a computer program for extracting the poles and zeros of a 4th order
polynomial transfer function and a computer program to calculate the time his-
tories of the linear velocities and angular displacements given the poles and
zeros of the transfer functions; also included are discussions of one and fwo
degree of freedom simplifications of the equations of motion as a means of ob-
taining approximate predictions of the frequency and damping of the principal
modes, example determinations of flight motion of a particular airplane using
the methods presented in the text, and the use of unexpanded force terms in
general ized non-linear equations of motion to investigate departures from the
results of small perfubation theory.

A discussion of the correlation and interpretation of Bode plots and Root
Locus diagrams is included. The final appendix presents a bibliography of per-
tinent documents not specifically cited in the text.



FACTORS CONTRIBUTING TO THE PILOT'S OPINION OF
AIRCRAFT RIDING AND HANDLING QUALITIES

Pilots, like other humans, are sensitive to the inertial forces imposed on
their bodies by changes in their motion. The relative acceptability of these
inertial forces gives rise to the pilot's subjective opinion of the riding qual-
ities of the aircraft. To confrol the motions of the aircraft, the pilot must
exert certain forces on the controls and displace them through certain distances.
The magnitudes of these control forces and control displacements and the magni-
tude and phase relationships between control force and displacement on the one
hand and the aircraft's motion on the other hand combine to form the psychologi-
cal and anthropological basis of the pilot's opinion of the handling qualities
of the aircraft.

In addition to the riding and handling qualities defined in this fashion,
a pilot's satisfaction with his aircraft also depends upon the aircraft's control
capabi l'ity, which includes such factors as how quickly it will attain a given
bank angle, how tight a turn it will make, how great a variation in c.g. loca-
tion it will tolerate, how offten retrimming is required, the minimum airspeed
for rudder effectiveness, whether it is possible to fly unyawed with asymmetric
power, whether the stall is gentle and the recovery rapid, and whether spin
recovery is simple and rapid. The logic for separating what is commonly treated
as a single study, aircraft flying qualities, into fthree divisions as in the
present work stems from a number of considerations: handling qualifies can, in
modern aircraft, be altered to achieve desired values without affecting the
riding characteristics or the control capabilities; many of the control capabil-
ity limits involve very large motions and aerodynamic non-linearities not
normal ly encountered in the motions associated in the pilot's mind with the rid-
ing qualities; the control capabilities are primarily a direct result of the
aircraft's geometric configuration; riding qualities are stfrongly affected by
inertial characteristics as well as geometric configuration; the pilot makes a
direct association between the '"ride" and the force applied to his body; for
many of the control capabilities, his role is more like That of an observer in
that his gratification is dependent not so much upon the forces applied to his
body as to the psychologically satisfying condition of being able to will a
motion and observe that it is carried out or to being able to refrain from
performing a tedious task. It is, of course, true that if one configures the
aircraft geometry, mass distribution, and control system to obtain a given set
of riding and handling qualities he has at the same time determined, even if
unknowingly, much of the aircraft's control capability. Nevertheless, for the
present, an aircraft's geometric and inertial parameters will be examined pri-
marily in the light of their influence on riding and handling qualities. The
exception to this is the discussion in the literature review of the control-
lability during stall and spin entry.

As in other matters of opinion, it has proven difficult fto identify and to
quantify those necessary parameters and their desirable values which are sig-
nificant in determining the riding and handling qualities of aircraft. Military




flying quality specification, for example, are the result of the combined efforts
of many trained engineer-pilots over the years; yet until the release of M|L~F-
8785B (ASG) in 1969, most requirements were still stated in qualitative terms.
The new specificaticn and the accompanyling 688 page background report, AFFDL-TR-
69-72, August 1969 (Ref. 4), are the result of more than three years work by a
large group of specialists, who consulted more than 660 references, some of them
obscure or classified milltary reports. The new specification sets some quan-
titative limits on both the riding and handling qualities as well as continuing
some qualitative requirements from earlier editions of the specification. The
quantitative limits are derived from modern stability analysis, some |imited
anthropological test data, and pilot comments on the characteristics of variable .
stability aircraft. The selection of parameters upon which to set requirements
appears to have been based upon experience rather than upon a rigorous demonstra-
tion that these parameter values do indeed represent the necessary and suffucient
conditions for adequate riding and handling qualities.

While the new specification is a great step forward, it is to be hoped that
one will soon find standards of acceptable aircraft motions, control forces and
displacements, and aircraft response to control displacements which trace their
claim from systematic anthropological studies of forces and limb extensions,
accelerations, response rates, etc. found to be comfortable by a large number
of pitots.

Certainly prior to the issuance of the new specification, and probably even
today, the most widely used concept of aircraft flying qualities (handling qual-
ities In the present context) was that developed more than 25 years ago and
detailed in the standard textbook of Perkins and Hage and in NACA Report 927,
"Appreciation and Prediction of Flying Qualities," by W. H. Phillips. To appre-
ciate the reason that the group of parameters upon which the criteria of these
authors are based came into common use, it is well to recall that an aircraft
spends most of its flight time in a quasi-equilibrium condition; thus, the forces
and, to some extent, the amplitude and phase relations between force application
and aircraft response are the traditional basis for the piloT's opinion of the
handling qualities.

In developing criteria for the desirability of these forces, deflections,
and responses, the attempt was made to express them in terms meaningful to the
designer, readily measured and applicable to a wide range of aircraft types. For
examp le, the change in elevator angle with change in trimmed lift coefficient
can be shown to be related to the location of the center of gravity in chord
lengths from the aerodynamic center, the ratio of horizontal tail area to wing
area, the location of the horizontal tail plane aft of the wing aerodynamic cen-
ter in wing chord lengths, the tail lift curve slope, the relative dynamic pres-
sure and flow direction at the tail compared fo that at the wing, and the effec-
tiveness of the elevator in changing the apparent tail angle of attack. Note
that these quantities are all non-dimensional and, therefore, applicable to
aircraft of varying size and configuration. |If one is willing to assume that
the tail contribution to aircraft 1ift coefficient is small, then by measuring
the dynamic ‘pressure and aircraft weight during flight the |ift coefficient is
readily obtained. The elevator angle can be measured easily by installing the
movable element of a potentiometer or other position transducer on the elevator
shaft. For a given aircraft dée/dCL can be altered readily only by changing
center-of-gravity location. From the pilot's viewpoint, dée/dCL is significant
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because a zero value of this parameter is indicative of the rearmost permissible
loading which an aircraft may have before no motion of the stick is required to
change speed. Obviously, a pilot will prefer a loading such that at least a
small displacement of the stick is required to change speed. Usually, therefore,
the aft c.g. limit will be set about .05¢c ahead of the point for d6e/dCL=0

Unfortunately, a pilot is less able to discern variations in dée/dCi than
he is in changes in force with speed. When written as d(Fs/q)/dC| the parameter
depends on the same quantities as d8e/dC| with the addition of the control sys-
Tem gearing and the aerodynamic moments of the elevator about its hinge. De-
pending upon the elevator design, d(Fs/q)/dCL can be zero forward or aft of the
c.g. location for which dée/dC_ = 0. It is desirable to attempt to design the
elevator such that d(Fs/q)dCL = O occurs at or slightly aft of the c.g. location
for which dée/dC_ = 0. One would not wish the forces required to change speed
to disappear while there is yet some stick motion required nor would one wish
the aircraft to continue To change speed if the pilot released the stick. The
conditions may both occur if the aircraft has d(Fg/q)/dCL = O forward of the
c.g. location for which dée/dC| = 0 and is loaded such that the c.g. is between
the two points. Hence, it is usually felt necessary to check both parameters
during flight test. The aft c.g. limit is then chosen fo insure that both para-
meters have at least perceptable values.

Although an airplane may be locaded with the c.g. so far aft that the control
forces and elevator deflections required to change speed are opposite to those
normally required, it is not necessarily an uncontrollable airplane. Only if
the forces or deflections required for control are too large or require foo ra-
pid an application for the pilot To manage can the aircraft really be called un-
controllable. The fact that the controls regquire actuation in a manner contrary
To the usual experience would not of Itself be so serious if it were not also
for the fact that at these c.g. locations the aircraft will spontaneously rotate
to large angles of attack rather rapidly unless countering controls are promptiy
applied and continuously modulated. [f the rotation takes place more rapidly
than the speed decreases, large load factors will be developed and the aircraft
will quickly destroy itself. Because of the motion damping effects of the hor-
izontal tail, however, the c.g. location at which the elevator angle or stick
force per unit of normal acceleration is zero is further aft than when dée/dCy =0
or d(Fg/q)/dC| = 0; thus, even when the aircraft is loaded such that d(Fg/q)/dCi =0,
it will retain a finite value for dFg/dn. Hence vehicle motions--as contrasted
to speed changes--will require conventional, although light, forces for control.
As the c.g. moves aft from the dFg/dn = O location, control becomes progressively
more difficult. Determining the c.g. location at which dFs/dn = O from flight
test provides the designer with a check on the calculated damping effectiveness
of the horizontal tail and indicates fo the pilot the control margin he has for
maneuver if he should inadvertantly load the aircraft such that d(Fg/gq)dC_ = O.

In addition to providing a measure of the rearmost permissible c.g. location
the parameters dse/dC|, d(Fg/q)/dCy, dée/dn, and dFs/dn are often used to define
desirable handling at normal loadings. The presently accepted standards for the
values of these or similar parameters are discussed in the literature review. At
this point it is sufficient to note that for psychological reasons increasing
parameter values seem to be preferred as aircraft size and gross weight increase
although human physical capabilities provide the overall upper and lower bounds
for all classes of aircrafft.
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In addition to the stick force arising from aerodynamic hinge moments, a
significant contribution is usually supplied by control system friction. This
has a material bearing on the pilot's evaluation of the aircraft's handling
characteristics. In fact, customer feedback to the manufacture indicates that
the average light aircraft pilot seems to prefer a confrol system which requires
a conscious application of force to change speed and which is tolerant of small,
inadvertant stick movements. For this reason most lightplane manufacturers
evaluate the handling characteristics of their products only in terms of the
forces required to change speed and normal acceleration as functions of loading,
speed, configuration, and power seffing.

In addition to the handling about the y-axis of the aircraft, the pilot
will also be concerned with handling about the other two axes. Traditionally
such things as The sideslip angle per unit of rudder deflection or rudder force,
the amount of rudder needed to compensate for the yawing due fo aileron deflec-
tion and rolling, and the non-dimensional wing tip helix angle (pb/2U) which is
a measure of the rolling capability of the aircraft have been measured to pro-
vide quantitative support to the pilot handling impressions. As will be seen
from the |iterature review desirable values are still being specified for most
of these parameters.

The reader will note that all of the parameters mentioned thus far are in-
tended to be measured under steady flight conditions. One will generally find
little in the way of quantitative requirements on the dynamic behavior of air-
craftf. This situation arose because older aircraft usually were not very '"clean"
aerodynamically, had a low ratio of weight to volume, operated at low altitudes,
and had relatively large horizontal tailplanes 1o provide adequate control at
low speeds. |t can be shown that aerodynamic drag is the principal confributor
to the damping of the longitudinal phugoid oscillation; hence a "dirty" air-
plane--particularly one with relatively low power loading--seldom has unsatis-
factory phugoid characteristics. Damping of the dutch roll and longitudinal
short period modes is strongly dependent upon the ratio of the restoring force
generated by rotation to the moment of inertia about that axis. Thus low den-
sity aircraft with large control surfaces operating in dense air usually exper-
ience well-damped longitudinal short period and dutch roll oscillations. However,
as light aircraft become more dense, operate at higher altitudes, become more
"clean", and utilize higher power loadings, it is no longer reasonable fo assume
that if one assures satisfactory static handling characteristics, as outlined
above, then the dynamic flight characteristics, will naturally be satisfactory.

Two additional concerns of recent vintage have also served to focus atten-
tion on dynamic characteristics: ride and handling in turbulence. Now that the
novelty of flight has disappeared for a significant fraction of the population,
standards foi~ what is an acceptable level of ride are continuously being upgraded.
Travel in current jet transports has convinced many that (a) flying can be very
smooth and (b) an uncomfortable ride can be very fatiguing for passengers and
can serve to diminish the effectiveness of a pilot. As a result of these comfort
and safety considerations and the growing realization among designers that air-
craft riding characteristics can be altered through suitable design just as they
can in other vehicles, increasing attention is being directed toward establishing
the vehicle behavior identified with good riding qualities. Since the human body
associates only changes in motion with vehicle ride, it is apparent that riding
qualities can be defined only in fterms of the vehicle's dynamic characteristics.

9



In turbulent weather, the aircraft is struck continually by gusts of more
or less random magnitude and orientation. Most of the characteristic motions
of the aircraft are excited simultaneously. As a result, pilot work load may
be very high depending almost entirely on the vehicle's dynamic characteristics.
Well damped aircraft, for example, materially reduce the amount of control input
required of the pilot when compared with aircraft having lightly damped longitu-
dinal short period and dutch roll oscillations.

There is even less justification for neglecting consideration of the air-
frame dynamics when one observes that many of the conventional static stability
parameters are merely the zero frequency values of more general fransfer func-
tions. They are, therefore, still available, having been generated as a part
of the process of evaluating the general dynamical behavior. This point is
slaborated somewhat in the next section.
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FLIGHT MOTICNS OF LIGHT AIRCRAFT —
GENERAL CONSIDERATIONS

The motion of a rigid body in space is described completely by a system of
six equations, three representing the translation of the center of mass (center
of gravity) and three representing the angular motion of the body about its
center of gravity. General solutions of this system of differential equations
are unknown because products and squares of the dependent variables appear in
some ferms and because the unbalanced aerodynamic forces and moments which pro-
duce the motion are not known explicitiy. Since these forces and moments are
known to depend, among other things, upon the vehicle's inclination relative to
the stream, the time rate of change of the inclination, the vehicle velocities,
and the vehicle accelerations, it has been usual to represent the forces and
moments by Taylor series expansions in these variables about the equilibrium
condition. Even if these variables are all related to the six dependent variables
and their derivatives, one is faced with the task of evaluating either empir-
ically or analytically the first and higher order partial derivatives of alf
The forces and moments with respect to each of the dependent variables and their
derivatives in order to make possible solutions for particular sets of initial
conditions--the only possible solutions because of the presence of the non-
linear product and square terms. The inverse problem, finding the values of
all the partial derivatives 1f the motion is known, clearly has no unique solution.

|f it were necessary to foliow this procedure in all its detaltl every time
someone wanted to know the motion of an aircraft following a momentary control
surface deflection, the motion would probably remain unknown until a series of
expensive flight tests established the safety of the particular confrcl surface
deflection and the character of the respconse. Fortunately, most departures
from equilibrium are small and, also because there is a plane of symmetry,
there is little lateral-longitudinal cross-coupling. As a result, for most
flight maneuvers one can neglect products and squares of the dependent variables
because they are very small compared with the value of the variables themselves.
One can also consider the aircraft's motion to be represented by ftwo independent
systems of three differential equations; further, the departures from equilibrium
are small enough that the aerodynamic forces and moments can be described with
sufficient accuracy by retaining only the linear term of the Taylor expansion.
The equations are thus made linear and amenable to a vast literature of solution
techniques.

The usual range of values of the partial derivatives in the Taylor expan-
sions of the aerodynamic forces and moments, the so-called stabifity derivatives,X
are such that most aircraft exhibit very characteristic motions in response to
momentary control surface deflections. |In response to an elevator deflection

¥ For a detailed derivation of the equations of motion, their linearization,
and the normalization of the partial derivatives to obtain the conventional
stability derivatives, the reader is referred to Appendix A.
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The aircraft will exhibit a well-damped osclllation in the neighborhood of

6 radians/sec., the so-called short period mode; at the same time it will also
exhibit a very long period (Phugoid) oscillation which may even be slightly
divergent. The motions about the other two axes are always coupled. There

is an oscillation, called the dufch roll, which usually is not well damped

and has a frequency near 6 radians/sec. There is an aperiodic motion, which
is usually slightly divergent, called the spiral mode, and a second aperiodic
motion, called the rolling mode or roll subsidence, which is heavily damped.

During the past twenty years, it has become common practice to study
flight motions by fransforming the linear differential equations into alge-
braic equations through the use of the Laplace transform. One can then
solve for the response to a specific control surface deflectlion readily by
matrix fechniques. The resulting ratio of aircraft response to control
surface deflection is called a fransfer function, eg., the function which
describes the manner in which the aircraft converts a control surface deflec-
Tion into a motion. |f one then obtains the inverse Laplace transform of
these transfer functions, he then has the time history of the aircraft's
[ inear or angular velocity components resulting from a specified contfrol
surface defliection. The three dependent variables excited by an elevator
motion are usually faken to be u, 6, and o, although w or a, may sometimes
be used instead of a.

Finding the inverse transform is not always straightforward and is really
unnecessary if one desires only fo determine the frequency and damping of
oscillations or the subsidence of aperiodic motions. The transfer function
consists of polynomials in the numerator and denominator. By factering
these polynomials and writing them as a product of factors, one can find the
values of the Laplace variable, s, for which the numerator or denominator
is zero. The value of s for which the numerator vanishes is called a zero,
and the value for which the denominator vanishes, a pole. A first order
pole represents an aperiodic motion in the fime domain. The numerical
value describes the rate at which the motion subsides (or diverges). A
pair of complex poles represent a periodic motion. The real part expresses
the damping and the imaginary part, the natural frequency. Understanding
of the significance of this procedure is enhanced, perhaps, if one plots
the poles on a plane (the s-plane) with the abscissa the axis of reals and
the ordinate the axis of the imaginaries. |f a pole lies on tThe right
half plane, the motion is unstable. A pair of complex poles, or roots, on
the imaginary axis represent an undamped sinusoid. The distance from the
real axis represents the frequency of the sinusoid. The distance from the
imaginary axis represents the degree of damping or divergence.

The location of the roots (poles) on the s-plane will, of course, change
as the values of the stability derivatives change. By calculating the locus
of roots for representative values of stability derivatives from negative
infinity fo positive infinity it is possible to determine the conditions
under which instabilities will exist. This form of analysis, as well as the
transfer function approach, also facilitates study of the effect of adding an
automatic control system to the aircraft. If one plots the poles and the
zeros of the aircraft-contro! system combination on the s-plane, he can employ

12




the well-developed methodology of the now classical locus-of-roots analysis

to sketch rather accurately the path which the roots must follow as the gain

of the feedback element in the combined system is changed from zero to infinity.
The concept of the locus of roots of the "open loop" transfer function* is

used in later sections of this work to illustrate the allowable range of values
for single aircraft stability parameters with all other parameters held constant.
Details of the construction of the fransfer functions for the airframe and the
numerical procedure for evaluating the constants in the transfer functions

and extracting the roots may be found in the Appendices.

As noted earlier, the study of the stability of accelerated motions (dynamic
stability) has often been treated as separate and apart from a study of the
tendencies of the aircraft at equilibrium to return to equilibrium 1f disfurbed
(static stability). It will be recognized, however, that the steady state,
or infinite time portion of the solutions of the general equations of motion
are representative of the "static" stability and handling. One may cite as
examples the longitudinal derivatives d8./da,, dFg/da;, dFs/du, and dg/dCi
which are often used to describe the handling and stability characteristics.

The first is simply the inverse of the zero frequency value of the transfer

a
function EZ-. Transfer functions written in terms of the lLaplace variable s
e

can be fransformed into the frequency domain by setting s = jw. The notation

a

EE' is used To designate the amplitude ratio of the two frequency dependent
e

quantities which form the transfer function. It is also a convenient short-

hand way to represent a specific transfer function, particularly its zero

frequency value or gain. The last derivative d§g/dC;, which is a measure of

the stick-fixed neutral point location** can be obtained from %— by multiply-
ing by CLa' The other two derivatives require that the TransferefunCTion

éz be obtained and multiplied by g&. or g—-. An alternate form of dFg/du,
dfs/g which can be found from Se ? i s 2nd CLy, is frequently used to

dc| ’ Fo/a = 8¢ o

locate the stick-free neutral point. Thus, while there are occasions when it
is sufficient simply to equate the forces or moments acting on the aircraft

and set the derivative with respect fo an aerodynamic angle equal to zero to
determine the static stability tendencies, the fact that the same information
is available as a part of the solution for the dynamic stability should encour-
age ohe To examine the vehicle motions and tendencies completely.

* Closed loop (aircraft plus automatic control system) transfer function with
the gain of the feedback element equal to zero.

*¥*  The neutral point is that longitudinal location of the center of gravity

for which the aircraft has no tendency either to return to its initial condition
or to continue to move away from it, if disturbed. The proximity of the c.g.

To the neutral point is the conventional measure of the aircraft's static
longitudinal stability. 13



CONTROL FORCES AND DEFLECTIONS—
GENERAL CONSIDERATIONS

A pilot's evaluation of the handling qualities of his aircraft has its
origin, of course, in his anthropological capacity. He is able to move the
control wheel fore and aft through but a limited distance before the reach
becomes uncomfortable; he is able to exert only a given maximum force with
comfort; a control force below a certain value is disturbing because the pilot
can apply it without consciously willing it and he has difficulty modulating
it; if the Time between control force application and the response of the
aircraft is longer than a particular value, the pilot will tend to become con-
fused and may apply erroneous control inputs; if the aircraft responds too
rapidly, he cannot control potentially dangerous motions.

In addition fo these constraints, the designer must provide a comfortable
relationship between wheel fore-and-aft travel and speed changes and between
wheel force and aircraft normal acceleration. |f these gradients are too
small, the aircraft is said fo be too sensitive; if they are too large, the
aircraft is said to be too unresponsive. The designer must also take care to
provide proper control centering for frimmed flight. |t is undesirable fo
permit the stick to move through an appreciable distance without requiring
the application of force, nor should the force required to set the stick into
motion be larger than the smallest force gradient for speed change or acceler-
ation.

Somewhat similar constraints govern the application of the lateral controls.

To accomplish these objectives, the light aircraft designer will usually
manipulate (for control of the longitudinal flight mode) the elevator deflec~
Tion to wheel deflection ratio, provide aerodynamic balance on the elevator
or a flying tab, provide centering springs, control the linkage elasticity and
friction, and limit the aircraft's center of gravity fravel; he will also
select a suitable elevator area, horizontal tail aspect ratio, airfoil section,
and horizontal tail area and he will locate the horizontal tail area suitfably
far aft. The designer will recognize that pitch responsiveness is related to
the aircraft's moment of inertia about ifts y-axis as well as the moment the
elevator can produce and that there is a structural limitation as well as a
human tolerance to normal acceleration which the pilot should not be able to
exceed inadvertently. The designer will also endeavor to provide a reasonably
| inear relation between control force or deflection and the desired result,
such as speed change or normal acceleration.

From the foregoing, it is evident that, to carry out this task in a direct
fashion, considerable knowledge of desirable anthropological limits must be
available as wel!l as a substantial knowledge of diverse aerodynamic and mechan-
ical characteristics. The state of understanding of this problem is discussed
in the literature review which follows.




LITERATURE REVIEW
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SCOPE

During a review (Refs. 1, 2, 3) of all NACA/NASA literature published
between 1940 and 1968, those reports dealing with aircraft stability and
control analyses and tests were set aside as a group. The documents in this
group were then screened and the content of those regarded as most applicable
to light aircraft design was noted in the report. For the present study,
the entire group was reexamined and rereviewed. In addition, the review of
NACA documents was extended backward to 1930, and a computer search of
Scientific and Technical Aerospace Reports, International Aerospace Abstracts, and
Department of Defense archives was made for current (1962 to late 1969)
stability and control information from world-wide sources. Included in this
were the USAF Flying Quality Specification and Stabitity and Control Datcom.

As one would suspect, much of the earlier (pre-1944) information has
been superceded; more refined analyses and more accurate and reliable test
data are now available. Most of the information is also uncorrelated: flight
test results are not compared with resufts from wind tunnel tests; wind
tunnel test results are not compared with theoretical analyses. To attempt
such a correlation and evaluation here is not possible with the information
available to the authors. The reason for this is that the wind tunnel or
flight test reports available in the open |iterature usually do not give
sufficient information on the airplane's geometric or inertial parameters
to permit satisfactory correlations to be made. The course adopted, there-
fore, was fo list all the stability derivatives likely to be significant in
the design of future light aircraft, detail the method of calculation regarded
as most reasonable for such aircraft, report the values of these derivatives
in such aircraft, and note pertinent references for each derivative. This
approach is an expansion {(in that it details methods of calculation and
typical results) and specialization (to light aircraft) of the approach
adopted by Eliison and Hoak (Ref. 5).

Values for these derivatives are required, of course, to calculate the
riding qualities of a light aircraft. The handling characteristics* will,
for the purposes of the present study, be defined as

(1) The longitudinal control force and contfrol
surface position variations with speed and
load factor--their maximum and minimum values,
phase relationships, and confrol travel required
to achieve them

¥  the reader will recognize that the definition of handling is somewhat
broadened here o include items previously identified with aircraft control-
ability. This has been done because many specification requirements state
responsiveness to control application only in terms of angular displacement
reached in a given time. |In such instances it is helpful to correlate the
initial responses to control application-~here considered as the handling
characteristics--with the final capabilities of the aircraft.

16
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(2) The angular displacement and angular rate
variations produced by application of rudder
and aileron forces--their maximum and minimum
values, phase relationships, degree of lin-
earity, and control travel required

(3) Controllability of the aircraft under special
circumstances.

The review which follows cites some of the literature available on the forces,
displacements, and application rates found comfortable by most humans. This
apparently has been considered in developing the force and rate limits set

in Mil F-8785B, For this reason, the discussion below follows The specifi-
cation fairly closely, yet pointing out those areas not treated and describing
methods available in the |iterature for insuring that the aircraft complies
with the specification.

For the present compilation, only that literature containing data appli-
cable fto aircraft designed to operate within the following limits was
considered:

Maximum gross weight 10,000#
Maximum wing loading 40#/f+2
Maximum indicated airspeed 300 mph
Maximum Mach number 0.4
Aspect ratio 2 5.0

Little or no wing sweep
Rigid structure

Those porfions of the specifications and other documents referring to
aircraft controllability as defined above and fo handling in furbulent air
or with external stores are not discussed. Also, in examining the literature
upon which the following was based, many documents not cited but dealing with
the subject were examined. Some were regarded as perhaps less complete than
the reports cited, as confirming results found in cited documents, presenting
data in a form not so well suited fo compariscon with theory, or presenting
less accurate results than are now available. The reader interested in perusing
The more interesting of these documents is referred o Appendix | for a biblio-
graphical listing.
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SYMBOLS

Ae effective aspect ratio
AR aspect ratio
Ag a commonly used area for a component which is the reference area for Cp,
a.c. aerodynamic center of wing
ag | i ft-curve slope at zero lift
ay liff-curve slope of vertical tail
BHP engine brake horsepower
b wing span
ba aileron span
by vertical tail span
C wing force parallel to the airplane reference line
Cc coefficient of wing force parallel to the airplane reference line 25875
Cp drag coefficient 25575
CDf zero |ift drag, found in Cp section
aCp
“0q 3(5)
CDo Thrge—dimensiona! drag coefficient found in lateral stability
derivatives section
Cdo two-dimensional parasite drag coefficient
Co, 2 a—iD‘
aC
Cpy =

18




Cgr

Cy,

3Cp

5 (8C)
2U

3CD

s

component drag coefficlent based on the area Ag
elevator hinge-moment coefficient when o+ = 0° and §g = 0O°

variation of control-surface hinge-moment coefficient with deflection
aCp

ad

| ift+ coefficient (L/%+pU%S)

U oCy

2 3u

oCL

oa

wing lift curve slope with infinite aspect ratio

aCL

3 (2
2U
aCL
98¢

)

section 1ift coefficient or rolling moment coefficient (L/4pU2Sb)

maximum section |ift coefficient

3Cy
pb
3

aCy
rb
B(ZU)

section [ift-curve slope of the horizontal tail
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Cma

Crg,

CméE

20

oCy
o8

change in rolling moment coefficient due To change in aileron deflection
(found in control forces section)

aCy
EIN

section lift-curve slope due to elevator deflection (this is not to be
confused with rolling moment coefficient)

aCyq

odR

pitching-moment coefficient (M/4pU%Sc)
pitching-moment coefficient due fo thrust force

airfoil section piftching moment about the aerodynamic center

3Cn

) (%ﬁ)
3Cm
o

3Cm

QcC
o (7U>
aCp,
a0

coefficient of wing force normal to the airplane reference line

yawing-moment coefficient (N/£pU?Sb)

aC,,

pb
B

aC,,

rb
B(ZU)




LAt ]

Ce

cf

€1

Tol

of

3¢,
36,

ac,
38

+hrust coefficient (T/ipU2s)
u 9Ct
2 3u
BCx
pb
B(ZU)
BCx
rb
3 (50
oC

—Y
oB

L:J QJL?
O Ol 0O
>

Q
O

R
mean aerodynamic chord
aileron chord
elevator chord
flap chord
airplane center of gravity
drag force
base of natural system of logarithms or Oswald's span efficiency factor

induced-angle span efficiency factor
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stick-force due to ailleron actuation
stick force
the equivalent parasite area discussed in the Cp section

ratio of elevator displacement to the product of stick length and stick
angular displacement

acceleration due to gravity (32.2 ft/sec?)
horsepower

height of the horizontal tail a.c. above the c.g. (positive for a.c. above
c.g.)

moment of inertia about the x-axis
moment of inertia about the y-axis
moment of inertia about the z-axis
product of inertia

incidence angle

radius of gyration about the x-axis
radius of gyration about the y-axis
radius of gyration about the z-axis
[i1ft or rolling moment

length of fuselage or body

length from c.g. to taill quarter chord

tength from wing quarter chord to tail quarter chord
tail volume factor

fength from c.g. to vertical tail aerodynamic center

pitching-moment about the c.g.
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Mfus
nac

MYaero

Te

(Bb)
20

e

d¢
v
RPM

SRP

pitching-moment about the c.g. due to the fuselage and nacelles

aerodynamic moments about the y-axis (pitching moment)

mass in slugs

wing force normal to the airplane reference |ine or yawing moment
normal acceleration in g's

rolling velocity

rate of change of rolling velocity
helix roll angle

dynamic pressure (+pU?) or pitching velocity
rate of change of pitching velocity
dynamic pressure at the horizontal tail
dynamic pressure at the vertical tail
propeller revolutions per minute
Reynolds Number

yawing velocity

rate of change of yawing velocity

wing area

seat reference point

rudder area

elevator area

flap area

body side area

horizontal tail area
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TDPF

TDR

24

distance in half chords which is used as a non-dimensionalizing
fac+or(zgf)

Thrust

tail damping power factor, see figure 72
tail damping ratio, see figure 72

1 9T :

5'53'(See Appendix A)

time or airfoil thickness

Time

lag time of the downwash at the tail plane
airplane velocity

stall speed

Trim speed

airplane weight

maximum width of the fuselage or nacelles

distance from c.g. fo wing quarter chord (positive for c.g. ahead
of quarter chord)

longitudinal distance rearward from c.g. to wing aerodynamic center

distance parallel to relative wind from the wing a.c. to the c.g.
(positive for a.c. ahead of the c.g.)

distance from body centerline to inboard edge of aileron

perpendicular distance from thrust line to c.g. (positive for thrust
line below the c.g.)

vertical distance from wing a.c. to c.g. (positive for a.c. above c.g.)

distance from the centfer of pressure of the vertical tail to the aircraft
centerline (positive for vertical tail above the x-axis)

distance from body centerline to quarter-chord point of exposed wing
root chord (positive for the quarter-chord point below the body
centerline)

dihedral angle

wing sweep angle



resultant angular velocity

angle of attack

rate of change of angle of attack
Induced angle of attack

angle of attack for zero |ift

stall angle of attack
elevator efficiency factor I(dCL/dGE)/(dCL/dat)l

sideslip angle

flight path angle from the horizontal
correction factor for induced drag
aileron deflection

elevator deflection

rudder deflection

ajileron deflection

elevator deflection

elevator angle at zero aircraft lift
flap deflection

trim tab deflection

downwash angle

change in downwash angle due to change in angle of attack.

Dutch Roll damping ratio
short period damping ratio

efficiency factor for tail, g./q, or the propeller efficiency
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6 pitch angle

é rate of change of pitch angle

A taper ratio (t+ip chord/root chord)

u airplane relative density factor (m/pSb)

i 3.1416

o] density

o} sidewash angle

T correction factor for induced angle or elevator effectiveness factor (ggfo
TR time constant for roll mode -
) roil angle

$ second derivative with respect to time of the roll angle

99§9- a measure of the ratio of the oscillatory component of bank angle o the

¢av average component of bank angle following a rudder-pedal-free impulse
aileron control command

v yaw angle

wB phase angle of Dufch Roll component of sidesliip

w“d ODutch Roll natural frequency

w”sp short period natural frequency

Subscript:

a.c. aerodynamic center

c.g. center of gravity

c/4 wing quarter-chord

h horizontal tail

t tail

v vertical tail

W wing
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THE STABILITY DERIVATIVES

IT is customary, as noted earlier, to represent the aerodynamic and
thrust forces on an aircraft by a Taylor expansion about the conditions
for steady, level flight, Because of the assumption that perturbations
from equi!ibrium are small, only tThe linear terms aré retained; squares,
product terms, and higher order derivatives are neglected, The remaining
derivatives, called stability derivatives, belng more numerous than the
equations of motion, can therefore be evaluated only through special tests
or through analyses which limit responses to those resulting from a single
variable, The discussion below isolates each of these derivatives, the
method from the literature regarded as most suitable for its evaluation,

and Typical values for light aircraft,
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CL

Usually, by the time an airplane is subjected to a stability analysis,
the design has progressed far enough that the [ift coefficients for The flight
condiftions of infterest are known for the complete airplane. Since 2-D
(section) data are available for many airfoil and airfoil flap configurations,
it is desirable to have a means of converting section data to three-~dimensional
data for a particular airfoil. In Theory of Flight, Richard Von Mises (Ref. 6)
gives an estimate of lift coefficient,

Cy
1 + 2/AR

~

CL

An example 2-D plot of Cy versus angle of attack is shown below for the 2412
airfoil section.

2.0
Rn
sel o 3.1x10%
o 5.7
1.2} ¢ 8.9
A& 5.7 [standard
o s roughness]
whl
= |
s
£ e
[ ]
[-]
o
s o0
=
=
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2
@
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»
-.8 -
P I 1 1 S
-32 -24 ~16 -8 0 8 16 24 32

Section Angle of Attack, o , deg

Figure 1. 2-D plot of section lift coefficient
versus angle of attack for 2412 air-
foil section,

The approximation does not include such factors as taper effects and tip effects.
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I+ should be noted that 2-D section data are available for a large number
of airfoils in Theory of Wing Sections (Ref. 7); and the same data are
included in TR-824 (Ref. 8).

A refined analysis to determine lift coefficient should include the lift
contribution of the tail and, if possible, the |ift contribution of the fuse-
lage. The interference effects between the wing and the fuselage may be
significant and, for this reason, wind funnel fests or actual flight tests

contribute to determining lift coefficient. The tail coefficient,
(Lift)4ai
“Le T 7z p07), S
t T

can be included in that for the entire aircraff where nt = q+/qg:

St
(C/ das =C +C =—n +¢C .
L*Airplane Lw Lt Sw t quselage
nacelles

The tail contribution to the total airplane C; at cruise can be approximated
by using the moment equation:

= 0.0 = ¢, =2 - (== =%
Cp =0 Ly ¢ CLt Sy e g
Xa Sw
or CL, =CL —=—n¢ X
t W lt St

The fuselage |ift coefficient may be quite difficult To estimate, unless
some simplification, such as slender body theory, is applied. NACA TR-540
(Ref. 9) discussed the interference effects between the wing and the fuselage
and gives some example |ift coefficients for The fuselage at various angles of
attack. The table below gives an example of some of tnese experimental data.

0=0° 0=4° 0=8° a=12°
Fuselage Engine CL Cp CL Cp CL Ch CL Cp
Round None .000 .0041 .00l .0042 .005 .0049 .011 .0062
Round Uncowled .000 .0189 .001 .0191 .004 .0200 .008 .0216
Round Cowled .000 .0069 .008 .0073 .017 .0088 .028 .0115
Rectangular None .000 .0049 .005 .0054 .014 .0068 .026 .0097
Table 1. Example lift coefficients for the fuselage

at various angles of attack.

* A method for calculating the elevator deflection required for equilibrium

cruise is given in the sample calculations in Appendix G. 29



The fuselage coefficients in the table are based on wing area of the wing fuse-
lage arrangement fested. Thus, by examining the table with a knowledge of the
airplane angle of attack, one can estimate the fuselage contribution to the

total airplane 1ift coefficient. For small angles of attack, 00 to 8°, the
fuselage lift can probably be negiected without a significant change in the total
airplane {ift coefficient, unless the fuselage is highly cambered.

Datcom (Ref. 10) gives a method for calculating CLa of a body based on
potential flow theory (see CL,). Thus, C_ can be approximated by multiplying
CLa by o of the body, which is known.

For light airplanes in the cruising mode of flight, the lift coefficient
will probably fall between 0.25 and 0.45. |In cltimbing flight, C_ will probably
be larger--0.5 to 0.9. For the landing approach, the usual C_ will probably
range from .95 to 1.18. For the Cessna 182, typical values are 0.309 at cruise,
0.719 in climbing flight, and 1.12 in the landing approach.
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Cp

The drag coefficient, Cp, is an aerodynamic force coefficient which can
be thought of as a damping coefficient. The equilibrium airplane drag effec-
Tively damps the thrust by acting In the opposite direction of the relative
wind and is aiways positive in sign. When considering performance of an alr-
craft, the smallest possible value of Cp is desired; however, in airframe
dynamics, Cp is the main contributor fo the damping of the phugoid mode.
Thus, the larger the value of Cp, the better the damping. Since phugoid
damping s not considered of major importance in the flying qualities of the
airplane, the performance rather than the flying qualities of the aircraft
should dictate the design value of Cp.

A preliminary stage of drag estimation of an airplane in an incompress-
ible flow may be accomplished by adding the individual drags of several
components of the airplane. This method is called "drag breakdown." The
majority of airplane drag curves can be expressed as

Ch =C +—-—CL2 *
D~ *Df 7 7eAR

CDf = zero |ift or parasite drag,

where

Mathematically, Cpg is ‘the intercept on the Cp axis of a graph of Cp versus
CLZ, and 1/meAR is the slope. Only at very low or high values of Iift
coefficients does the parabolic approximation deviate from the actual drag
polar.

The following procedure is commonly used to obtain the value of CDf for
a particular airplane. The drag coefficient of each component is based on an
area, Ay, "proper" to that component. For example, one usually bases the drag
coefficient for the fuselage on the maximum fuselage area. The equivalent
parasite drag area, f, is then expressed as

f = Cp,S = ICp Ag

The total f for an airplane is approximately the sum of Cp _Aq for the individ-
ual components, plus five or ften per cent for mutual interterence between the
components. Another percentage error (3% to 5%) may also be added for small
protuberances such as handies, hinges, antennas, and cover plates. Fifteen per
cent of the fotal Cp,_Ar was used to account for protuberances and interferences
on the Cessna 182 discussed later in the present study. Once the total f Is
found, Cpy for the airplane can be determined from

f
Cp, = —
D
where f S
S'= wing area.
. CL2
Total Cp is then CDf + —y=y
* e can be estimated in the CLa section.
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Values of Cp_ and the areas on which they are based are given in the fables
below. This information was selected from References 11, 12, 13, and 14,

The wing drag Cp_ for airfoils with standard roughness can be obtained
from a table given in"Reference (135) and shown below. The comparison is based
on standard roughness at Ry = 6 x 10%; the wing Cop is based on wing area and
is tabulated as Cq.. Wing flap deflection may generate an additional Cp

. T
which should be accounted for.

NP . +
Airfoil Section () Cdg Cq Clmax Og Cmac
63,-415 .15 .0098 .20 1.33 12. -.070
23016.5 .165  .0102 .15 1.20 12. -.005
23012.0 .12 . 0099 .18 1.22 12. -.015
2412 .12 .0098 .20 1.22 14, -.048
23018 .18 .0105 .10 1.05 1. -.005
2410 .10 .0095 .20 1.22 14. -.050
63--215 .15 .0097 .16 1.26 14, -.030
641-412 12 .0097 .31 1.34 12. -.070
64,~A215 .15 .0102 .20 1.20 4. -.035
65,~415 .15 .0100 .22 1.25 14. ~.065
641-212 .12 .0088 .18 1.18 11. -.025

Table 2. Airfoll sections.

The fuselage Cp, can be obtained from the table below by choosing the fuselage
most nearly like the one investigated. Twenty per cent of Cp,_ can be added

to account for the canopy and windshield. For the Cessna 182, the fourth
fuselage was chosen.

T Ref. Area CDT

————
—— ~0.092L
S¢ 0.266

Cee——" —o.119L
Se 0.062

== -o0.1271L

C :._19 S¢ 0.071
]
( : 0.182L

&= Zo.ml

Table 3. Fuselage drag where S. = maximum cross sectional area
and L = Fuselage length.

|

@

0.063

!
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The empennage Cp_ values for undeflected control surfaces can be found from
Table 4 based on the tail planform area where ig is the horizontal tail
surface incidence.

Tail c
Arrangement Description Area Dy
Tapered fillets, vertical and
@ horizontal tapered surfaces
ig = 0Q° S¢ | .0043
ig = -49 . 0063
Tapered fillets, tail surfaces
& Pwith end plates
ig = 0° St .0058
ig = -40 .0063
@ Symmetrical tapered fillets
d g = 0° S¢ | -0059
/) Vertical and horizontal tail
.‘ surfaces ig = 0° S | -0070
ig = -40 .0058
Tail surfaces with end
<==—{|p1ates
ig = 0° S¢ | .0058
Tapered fillets, horizontal
CS——==|ftail surfaces
ig = 0° Sg | -0039
ig = —4° .0083
ig = 4° .0061

Table 4. Empennage drag.

The information required for landing gear drag prediction is given in Tabfe 5.
For the nose gear, Cp. is given; however, for the other landing gear, the
value of f is given. The tabulated value of f is the value for both wheels
of the landing gear assembly.
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Configuration Remarks f=Cp, Ax
l' 8.50-10 wheels, not faired . . . . . . . 1.67
8.50-10 wheels, faired . . . . . 1.50
8.50-10 wheels, no streamline members 3.83
8.50-10 wheels, faired . 0.74
27-in. streamlined wheels, not
faired 0.98
27-in. streamlined wheels, not faired 0.84
8.50-10 wheels, faired . e e e e e 0.68
21-in. streamlined wheels, not faired 0.53
E@ 8.50-10 wheels . 0.51
c
W 8.50-10 wheels, not faired . 1.52
@ 8.50-10 wheels, faired 1.02
AR
|/ 8.50-10 wheels, not faired 1.60
T
I' 24~in. streamlined wheels, & intersections
. fitleted . . . 0.86
(%) | 8.50-10 wheels, no fillets . 1.13
ﬁ
8.50-10 wheels . 1.05
N
Ci?ﬂ Low pressure wheels, intersections filleted 0.31
Low pressure wheels, no wheel fairing . 0.47
Streamlined wheels, round strut, half fork
no fairing 1.25

Nose Gear

For the nose gear CDTr = .5>.8 based on
Ar = (wheel diameter)(wheel width)

Table 5. Landing gear drag.




The Cp_ values for other components of interest can be estimated by using the

table "below:

AREA FOR DRAG

COMPONENTS CALCULAT ION Coy
Nacel les
1. above wing, smal |
airplane Cross section area .250
2. large leading edge
nacelle, smail airpiane Cross section area .120
3. small leading edge
nacel le, large airplane Cross section area .080
4. improved nacelle, no
cooling flow Cross section area .050
5. improved nacelle, typical
cooling air flow Cross section area .100
Wing Tanks
1. centered on tip Cross section area .05-.07
2. below wing tip Cross section area .07-.10
3. inboard below wing Cross section area .15-.30
Wires and Struts
1. smooth round wires
and struts (per foot) Frontal area 1.2-1.3
2. standard aircraft cable
(per foot) Frontal area 1.4-1.7
3. smooth elliptical wire
(per foot) Frontal area
fineness ratio 2:1 0.6-0.4
fineness ratio 4:1 .35
fineness ratio 8:1 .3-.2
4. standard streamlined wire
(per foot) Frontal area .45-.20
5. square wire (per foot) Frontal area . 16-.20
6. streamlined struts
(per foot) Frontal area .075-0.10

Table 6.

For smooth round wire of diameter less than z inch, assume

Airplane components.

two end fittings equivaient to three feet of wire.

For smooth round struts of diameter greater than 5/16 inch,
assume two end fittings equivalent to one footl of struft.
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For smooth elliptical wire, assume two end fittings equivalent
to 10 to 15 feet of wire.

For square wire, assume two end fittings equivalent to two
feet of wire.

For streamlined struts, assume two end fittings equivalent to
five feet of strut if faired, ten feet if unfaired.

The total drag coefficient for the airplane is thus
ZCp. A 2
0 = Dphm CL .
S TeAR
The drag breakdown method was used to estimate a drag coefficient of 0.0311 for

the Cessna 182. Drag coefficients for other light airplanes can be found
using the table below taken from Reference (14).

*

YEAR A 1RPLANE TYPE b S W "POWER" U Ch
(f+)  (ft%)  (lbs) (hp) (kts)

1903  Wright-Brothers biplane 40 510 750 12 26 0.074
1945  Piper "Cub" personal 35 179 1500 135 110 0.032
1950 Cessna "170" personal 36 175 2200 140 122 0.032

1942  Messerschmitt~-109 fighter 32 172 6700 1200 330 0.036
1943 N. A. P-51 "Mustang" fighfer 37 235 10000 1380 380 0.020

Table 7. Drag coefficients for selected light airpianes

It should be noted fthat Reference (15) gives another method of estimating
drag coefficient which sums friction drag and the profite drag for each of the

components.

* e = 1/(1 + 8) and a graph for estimating (1 + 8) can be found in the
discussion of the CL, section.
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Cm

The aerodynamic pitching moment about the c.g. is defined as Cp. In
equllibrium flight, the aerodynamic pitching moment must balance the moment
coefficient resulting from thrust. Although C, appears in the list of dimen-
siona! stability derivatives in Appendix B of the present study, it is not
usually referred to as a stability derivative. The principal effect of Gy is
to contribute to the period of the phugoid mode. '

Several forces and moments, such as tail, wing, and fuselage lift and
drag, and moments about the aerodynamic centers of the wing and taii, confribute
to the pitching moment coefficient; however, for equilibrium, power-off flight,
the elevator is positioned so that Cy is zero. For powered flight, Cy is the
negative of the Cp required to balance the thrust force moment, Cmy. Cmt
can be writtfen as

Tz
C’"T="§T_
where q-c
zT = perpendicular distance from thrust line
to c.g., posltive for thrust line below
the c.g.
T = thrust

The particular airplane discussed later was examined with power-off; thus,
Cm = 0. From the equation above, it is also apparent that Cp is zero when the
thrust line passed through the center of gravity (zy = 0).

An equation for C, is also very helpful in designhing or sizing an airplane.
The equation can be written simply by summing the aerodynamic moments of the
various aircraft components about the c.g. The equation given below is a modi-
fication of that contained in TR-927 (Ref. 16). Defining "nose-up" as a posi-
tive moment, the moments can be summed using Figure 2, The following equations
are based on the assumption fthat cos oo = 1 and sin a = 0.

Lt
D¢
hl act
- 4

Xa t;’ It

Figure 2. Forces and moments in the plane of symmeiry.
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Mc.g. = Llxy + Dzg + My o, = Leig + Dghet Ma.c.t

where o , :
' + Xz is positive for.a.c. of wing ahead of c.g.
- 24 is positive for a.c. of wing above c.g.
- ht is positive for tail a.c. above c.g.
it = distance from c.g. fo tail gquarter chord

Thus, the equation for the moment coefficient can be written as

S, h
-cXay g la _¢ 3ttt >t h
Cmc.g. C7e+ Coe * Ong e, CLtSw c My CDtSw Ctnt * Cma.c.t
Since the tail is usually a symmetrical section,
Ci = (CL oy
L, L,
where
OLt=(0Lw"iw-€+it)
Thus,
S¢ h
_ ¢ Xa Za ; St Ly >t hey
Cmc.g. CLcT*0p g Cma.c. atcLat Sy C ng * CDt Sw C nt Cma.c.t

It should be noted that the above equation does not consider the fuselage
or propeller pitching moment. The fuselage pitching moment can be approximated
by

Cmc'g'fuselage = (afyselage) Cmy) fuselage *
(Cma)f se|age is evaluated in the discussion of the C in the present study.
The ef?ec*s of the propeller are discussed in the section dealing with power
effects on stability derivatives.
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Cr

The thrust coefficient CT,_llke C_ is not strictly a stability derivative
but is necessary in a dynamnc analyS|s The coeffICIenT |s non- dlmen5|onal
and is deflned as.

e .sThrusT
Cy = ————

For the Cessna- 182 discussed later, CT = 0.0 since the analysis was made with
power-off; however, for power-on cruise Cy = .04.

39



G, Cp, and Cpp.

The stabiiity derivatives CLu, Cpy» and Cy, are the changes in |ift, drag,
and pitching moment coefficients, respectively, with airspeed. These changes
at low speeds are really Reynolds number effects and can usually be considered
to be zero. The fact that they are very small for low Mach numbers is pointed
out by the figure below taken from Reference (18).

Im |
o =8 \\\\ oo
08 . /\‘\/‘ .06 ¢ \A

04

.04

b |»
J
A//
=
<
(-]

0° \ \V4
\ ,
.02 4
° = W\ V Cp=07

K; \; [ — .
\\\~:\
-04 0
03 0.5 0.7 09 03 0.5 0.7 09
Mach number Mach number

Figure 3. Variation of Gy and Cdowifh Mach number.

Since for the cruise condition Cr = Cp and Ct,, = Cp and in the same manner

as above Ct1,, is neglected for cruising flight. I+ should be noted that for
approach and landing maneuvers, CTu and Cp, may become significant and therefore
should not be neglected.

CLy» Cpy» Cp, » and CTU were chosen to be zero for the Cessna 182 investigated
later in this report.
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The stability derivative CL, is the change in lift coefficient with angle
of attack and is commonly known as the |ift curve slope. This derivative is
always positive for angles of attack below the stall. Ordinarily, the wing
accounts for 85% to 90% of the total C|,. This derivative is very Important
in equilibrium flight and in dynamic conditions. Since an airplane with a
higher value of Ciy, usually has a lower drag, a high value of C is deslirable
for optimum performance. Higher values of CL$ are necessarily assoclated with
high aspect ratio, unswept wings. The derivative also makes an important
contribution to the damping of the longitudinal short period mode.

That portion of the effective wing angle of attack induced by wing lift
can be written from Reference (19):

CL
o) =
me1AR
where
eq = = induced-angle span efficiency factor
T = correction factor for induced angle (see Figure 4)
AR = wing aspect ratio

Since the angle of attack for zero |ift does not vary with aspect ratio, the
geometric angles of attack for the same airfoil wing operating at the same C
but with two different aspect ratios are related by

L1 1 ;
™ e1ARq €1AR,y

o1 = ap +

Thus, The expression for the lift curve slope of a wing with one aspect ratio
in ferms of the |ift curve slope at another aspect ratio becomes

dc
oL, _ (T2

do T g4 513 (40 /dop (ol - 1)
Ll e1ARy e1AR,

(

where
dCL/da = change in 1ift coefficlent per degree

The equation above implies that the |ift curve slope is a constant, which is

a fairly accurate assumption for angles of attack up o 10 or 12 degrees.
However, once the |inear range of the 2-D lift curve slope is exceeded, the
lift curve slope can only be evaluated for a particular value of a. If condi-
tion "2" is that of infinite aspect ratio, the |ift curve slope per degree of
a finite aspect ratio can be written in terms of the 2-D airfoil lift curve
slope, (dC|/da)e as
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dc

dCL } | (a'—)oo
do g 4 (dCLy 57.3
do ﬂe1AR

Typical values for (C|,)w per degree range from about 0:.110 for thin airfoils
to about 0.115 for thick airfoils at Reynolds Numbers greater than about 108,
The slope is somewhat less at lower Reynolds Numbers and at the higher (near
1.0) Iift coefficients. For exacting use, reference should be made to careful
wind tunnel fests of the airfoil being examined.

A rapid approximation to the exact value of ey may be achieved by using
either or both of the figures below. Figure 4, taken from Reference (19)
has both T and § plotted for various taper ratios at an aspect ratio of 6.28
(6 is used in the discussion of Cp,). Figure 5 is a plot of 1 + T and 1 + 6
for various aspect ratios at a taper ratio of 1.0 from Reference (20}. Thus,
if a given design has an aspect ratio = 6, Figure 4 may be used; if The
design has a faper ratio of 1.0, Figure 5 may be used. For most light airplanes,
Figure 4 should give acceptable results.

0.20
0.16 /
/
. 0.12 \ .
“w
0.08
\ 7/
0.04 8 /
\NHVas
o
00 .25 .50 75 1.00

Tip chord/ o ¢ chord

Figure 4. Variation of T and §
with taper ratios at
aspect ratio of 6.28.
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Figure 5. Variation of 1 + T

and 1 + § with aspect
ratios at faper ratio
of 1.0.

The 1ift curve slope of partial or full span flapped wings can often be
approximated satisfactorily or directly found by consulting the NACA |iterature.
Many reports have been wriften concerning various flap configurations on several
airfoils or wings. Thus, NASA CR-1485 (Ref. 2) should be very valuable,
because it lists NACA reports dealing with specific flap configurations. In
the usual case, C|__ is larger for flaps deflected than for flaps retfracted.

For the cruise con%ifion, an undeflected flap can usually be considered part

of the airfoil section, thus requiring no additional calculation. For other
flight modes, however, it may be necessary to find C__, for a given flap deflec-
tTion. The |ift curve slope of the wing is probably khown for all flight
conditions by the time a dynamic analysis is made, but if not, NASA CR-1485
should be used as a major reference for information on prediction of aerodynamic
characteristics of flaps. |f the airplane analyzed has partial span flaps
instead of full span flaps, +he approximate |ift curve siope can be obtained

from
dc S¢ dC S¢. dC
(—5 = 2Ly 4o - 26 A,
do. 5 da S da
where dcy, - .
promd local section |ift curve slope
S = wing area
f = subscript denoting flap
dc , .
aa—-= mean section value of the |ift curve

slope between the root and tip section
43



Although C; for the complete airplane, in many cases, Is assumed equal
to the C|, of +hé wing alone, a method of predicting the body and tail C
The method presented here for approximating the body

should be available.

contribution is taken from Reference (10).

where

Lp

Figures 6 and 7 represent graphs for estimating both ko - ki and xo/zb.

c - 2(k2 - k])So
LaBody Vp27®

apparent mass factor which is a function of
fineness ratio (length/maximum thickness)

total body volume
cross sectional area at Xg

body station where flow ceases fo be
potential, this is a function of xji,

the body station where the parameter
ds,/dx first reaches its minimum value.
(This station where the change in area
with respect to x first reaches its lowesT
value can be estimated from a sketch of
the body.)

body cross sectional area at any body
station

body length.

1.0
/
vl
kz- kl .8 V
.6 : -
0 4q 8 12 16 20
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1.0

Figure 7. Body station where flow
becomes viscous.

For an estimate of some values of (CL )gsqy, Table 1 from TR-540 (Ref. 9)
in tThe discussion of C| can be considered. The table is a tabular form of C;
versus o for various fuselage, wing combinations. The value of C| is based on
wing area, and although the fuselages given do not really represent the fuse-
lage of a light airplane, They serve as an indicator for the degree of fuselage
contribution to (CLa)TofaI'

The tail as well as the fuselage may make a significant contribution to

Ci.,. For fthe usual aerodynamic analysis, the wing CLa is usually considered
o be the tota! C|, of the airframe; however, for a dynamic stability analysis,
the total C is the change in total C_ resulting from a change in angle of

attack only.” An airplane in flight must be trimmed after the angle of aftack
is changed if the new angle of attack is to be maintained. Thus, the trim
forces change over the angle of attack range, making it impossible fto measure
CL., In flight with everything else (including frim forces) constant.* Wind
tunnel tests can be used fto obtain the total Ci., since the model can be
restrained. Since the tai! contribution is small compared to the wing con-
tribution (usually less than 10%), in many cases, C__ of the wing alone can
be used. For the airplane to be analyzed later in HRis study, the wing

CLa (4.61) is used.

The tail contribution to Chu can be estimated as,
Total Lift = Lif*wing + Lif*fuselage + Liftigqg

Thus, Se
CLToTaI - CLw * Cquse * CL+ai| E;-nt

The derivative of The above expression is taken to yield

¥ Although impossible to measure exactly, CLy can be approximated with a

good degree of accuracy from flight test records.
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dcp | 9Cy dag Sg
(—=) =C +C + —_— = .
do Total T Moy T Mlagige T day da S, Tt
Since o
Oy = Oy = Ty + it -€,
do.
e AT ;
da
ThUS, dCL de St

(d& Jtotal CLOLw CL@fuse CL“TaH(1 da Sy Ny

The tail contribution can therefore be written as

Typical values of C|_ for light alrplanes fall in the range of 4.0 to 7.0 per
radian, depending chqefly on the type of wing used.
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Cp

© The s+abil|fy derivative Cpy fs the-change in drag coefficient with varying
ang[e of 'attack.: ~Above “the anglée of attack for minimum.drag thé drag coefficient
increases as the-angle of attack increases; thus, Cpy is positive in Slgn.‘
CD ‘usually has little effect on the short perlod moge and has only a small.

“effec+ on The phug0|d mode in +ha+ 2 decrease in CDa usually |ncreases s+ab;li+y

Chy, is made up of conTrlbu+|ons from the wing, fuselage, and tail secflon,
with the wing being by far the largest. The wing drag coefficient can be
written as

Cp = Cdg + (CL2/meAR)

where
Cdg = profile drag coefficient
e =1/(1 + 8) = Oswald's span efficiency factor *
Thus, CDa . is
wing c ~ dCdo s 2CL c
Boying ~ da meAR Lo,
For small angles of attack, (dCq,/da) is usually small; however, for flight

modes other than cruise, (dCdo/da) could have a S|gn|f|can+ value The wing
Cpy» in most cases, serves as a good approximation of the total Cpy.

For fuselage angles of attack less than 10°, the fuselage Cp, can be
ignored, as can the tail Cpy, with good accuracy. Wind funnel tests should
actually be used fo measure alrpiane Cpy» but because the wing Cp, dominates
and since the equations are relatively lnsen5|+|ve to changes in %Da’ it is
felt that Cp, can be approximated by the wing contribution. Thus,

dCdy , 2CL
Coo, = ga T TeAR Clo

The value of Cp, calculated for the Cessna 182 is 0.126 per radian.

* A graph for estimating (1 + §) can be found in the discussion of CLa'
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Crm

C is perhaps the most important derivative related to longitudinal
sTabiIT%y and control, since it primarily establishes the natural frequency of
the short period mode and is a major factor in determining the response of
the airframe to elevator motions and gusts. Usually, a large negative value
of C is desired (-0.5 to -1.0 for light airplanes), but if C is too large,
the required elevator effectiveness may become unreasonably higﬁ.

Figure 8, taken from Reference (11), shows that

N =L cos{o - iy) +Dsinlo - iy)
C =D coslo - iy) = Lsinla = 1)
where
i = incidence angle
t = subscript which refers to the tfail
w = subscript which refers to the wing
Wind
Direction

Figure 8. Forces and mements in plane of symmetry.

Neglecting Cge» The derivative of the pitching moment with respect to C| can
be written as

dcC dC dC
d_cr_n_:__ﬂf_a__i_d_ﬂ‘z_q_}_ Ma.c. _ Nt_siz_z‘;_nt + (.d_Q.”l) -
dCL \dCL c dCL c dCL , \dCL SW c 7 \dCL ac.J
\Y Y V
Contribution of wing Confribution Contribution
of of fuselage
horizontal & nacelles

tail
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where

Cma.c. = moment coefficient about aerodyanmic center
2t = length from c.g. fo horizontal tail quarter chord
Ny = q4/qw
Evaluating some of the derivatives shows that, if a - i, is small then
sinta - iy) = (a - iy) and cos(a - i,) = 1.0, Cpla - iy)/CL, is small compared
with (a - i), and dCdo/dCL = O then
dCN 2C| .
— =1+ (o - 1y) +C
dCi TeAR i D (CLg)per radian
dc 2C C
L2l - iw) - L
dCL  TeAR (CLy)per radian
where
e = span efficiency factor obtained from Ci,
AR = wing aspect ratio

Using the above equations,

dCp 2C; . Cp Xa

(—wi =[1.0 + (o =~ iy) i + ] -

dCL wing TeAR w’/’radians (CLa)per C

radian
+[ZCL_(0L_;) oG ]Ei
TeAR w’/radians (Cly) per c
radian
dCrm, . 2C . Cp 7 %a
(EE_JW'ng ~[]'O + 7oAr (¢~ Twradians * C[;]'E_ ClLg

2CL i CL 12a
+[ - (o - iy)radians - _']C_‘CLa

TeAR Cly
where C_, is per radian. |If the c.g. is ahead of the aerodynamic center, xg
is negative (xz = distance from c.g. to a.c.). |If the c.g. position is under

the wing a.c., z5 is positive (z5 = vertical distance from c.g. fo a.c.).

The angle of attack of the tail is a funcfion of the wing angle of attack,

aownwash, Tail incidence, and wing incidence. Thus,
o =oy - €+ it - iy -
The first term of a Taylor expansion of CNt gives
Cny = (ggﬂot o = (ggﬂot (o = € + Iy = iy)
Therefore, dCN ) (dCN)t (daw _de
dci do dC  dCi

49



or, : o :
dCNg _ (dCN/da)g (- dg,
dCy .  (dC|/da),, dou

The above equation can be used to write (dcmkch)+ as:

W, Z(ONdWy Sp 2 gy, _ de

dC ¢ (dC|/du), Sy C Gy dot
or,

dCp, _ dCL de. St At

e U i A T

Reference (19) gives the change in downwash with respect to a as

de _ o9 dCp (1/n)0"3 3cy0.25

aa- do. ARO . 7258 2’-{;
where
A = tip chord/root chord (use 0.67 for elliptical wing)
AR = wing aspect ratio
2. = distance from wing quarter chord to horizontal
Tail quarter chord.
[T the horizontal tail is located #0.5c or more vertically from the centerline

of the wake, a constant of 18 instead of 20 should be used.

Two methods, explained below, may be used to estimate the effects of the
fuselage on Cp,. The latter method is considered the more accurate of the two
but requires more calculations. The first method requires the evaluation of
The equation

dc 2
(— - Kewg dp (per radian)
do, "Fuselage g
or W
Nacel les
where
ke = empirical factor shown in Figure 9
we = maximum width of the fuselage or nacelle
Rb = length of fuselage or nacelle
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Figure 9. Empirical factor for fuselage or
nacelle confributions fo Cp,.

The above formula, taken from TR-711 (Ref. 21), is a simple method for estimating
the effect of the fuselage or nacelies on Cma'

The second method, taken from Perkins and Hage (Ref.11), considers the fact
that the variation of the fuselage longitudinal pitching moment with angle of
attack is greatly affected by the upwash in front of the wing and the downwash
behind the wing. The wing's induced flow has a heavy destabilizing influence
on the fuselage or nacelle sections ahead of the wing and a stabilizing Influence
behind the wing. Thus, the location of the wing with respect to the longitudinal
axis is of considerable importance. Multhopp (Ref. 22) proposes the following
formula to account for this phenomenon:

M __g (%, 2d8
4o 36.5 So ws do
or Cm _ 1 "o, 2d8
= X
de  36.55c ° 1 da
where
B = angle of local flow (freestream angle of
attack plus the angle of the induced flow
ahead of or behind the wing)
ws = fuselage width
%y = length of fuselage
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The equation can be integrated numerically in the manner illustrated in Figure 10.

Segments 1-5 dS/da from curve a
Segment 6 df/dc from curve b

14 98- % (;_de
hSegments 7-14 o Tllu i

dCiy 57.3 $14  dg
- 2 -
da 36-5 Sc sz=:1 vt ax

Figure 10, Typical layout for
computing fuselage
moments.

The integration requires that the average value of wfz(dB/da)Ax be found for
each segment and that the individual segment parts be summed. The curve for
dB/da versus positions ahead of the wing leading edge in percent wing chord are
given in curve (a) of the following figure. For the section immediately ahead
of the wing leading edge, dB/da rises so abruptly that integrated values are
given based on the length of this segment aft of the wing chord (curve b).

For the segment aft of the wing, it is assumed that dB/da rises linearly from
zero at the root trailing edge to (1 - de/do) at the horizontal tail a.c. In
the region between the wing leading and trailing edge, dB/da is considered
zero. It should be remembered that using the procedure above gives Cma per
radian.
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Figure 11. Fuselage pitching moment

contribution to Cmu‘

It may be desirable to include a factor which takes into account the
intferference effect of the fuselage or nacelle on the wing Cyy. This addition-
al confribution can be approximated by the formula below and added to the Cpy
of the wing.

dCry

da

C
= Goorsy WL.E. T2 WMid. - 3 WT.E.)

where
Wi E.» WMig.» @nd Wy g, = widTh; of The_fuselage aT
the wing leading edge, mid-
chord, and trailing edge,
respectively.

Thus, the total airplane Cp, can be written as the sum of the wing contribu-
tion, the fuseliage contribution, and the tail contribution:
2CL . Cp . Xa 2CL CL) Za

(Cma)Airplane = [t1.0+ TeAR (&~ Ty + Clg, c t Gear ~ (@ - i) - CLy © Cly,

dC

m CL dey 2t 7t . :
+ <EE_JFUS. - (aar4¢(1 “da Sy c© Ny (angles in radians and

or CLy, per radian)
Nac.
A typical value for C is the one associated with the Cessna 182. For

the c.g. at 26% of the mean aerodynamic chord Cpm, = -0.885. Moving the c.g.

forward produces higher negative values for Cp,; moving it aft achieves less
negative values. For most light airplanes, Cp, probably falls in the range

of -0.5 to ~1.0.
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C. .

The stability derivative Cls is the change in lift coefficient with the
rate of change of angle of aTTaéﬁ. This derivative arises from a type of
"plunging" motion along the z-axis, during which the angle of pitch, 6, remains
zero. For low speed flight, the derivative résults primarily from the aerody-
namic time lag effect at the horizontal tail, and ifts sign is positive. For
the conventional light airplane, the horizontal tail is immersed in the down-
wash field of the wing some distance behind the wing. When the wing angle of
attack is changed, the downwash field is also altered; however, it takes a
finite length of time for the downwash alterations to reach the tall, resulting
in a tail |ift which lags the motion of the aircraft. Cig can also arise

from aeroelastic effects at high speed, but these aercelastic contributions

are negligible for light aircraft.

This derivative is unimportant in a dynamic longitudinal stability
analysis for light airplanes, since ifs effect is essentially the same as if
the airplane's mass or inertia were changed about the z-axis. Many studies
either neglect C s by calling 1ts effects small or fail fo mention it at all
because of the negligible effects.

An empirical method for calculating CLg can be found using the same
approach that is used for Cms. Cme is merely the moment resulting from the
time lag of the tail lift; thus, CL& can be thought of as Cm& divided by the
non-dimensional moment arm ¥. Thus,

C * = -Cm&' = c C"&
La Q:t/C R't

The negative sign is included because a positive pitching moment from the
tail requires a negative |ift (nose~up is a positive pitching moment). Using
the equation derived for Cnd’ CL& can be written as,

__oCL  _ % S
CL& B NEA - 2CLat o 2 Sw "
2U

where
27 = distance between the wing quarter chord
and the horizonta! tai! quarter chord.

A typical range of values of Cys for light airplanes is 1.5 to 3.0. For
the Cessna 182, Ci 5 was found to be T.74.

* the length from the c.g. to the tail quarter chord divided by the mean
aerodynamic wing chord, (&:/c).
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Cp

The stability derivative Cps is the change in drag coefficient with rate
of change of angle of attack. Like CLg, Cpg arises from the aerodynamic lag
effect and various "dead-weight' aeroelastic effects. For airplanes in the
speed and weight range of |ight airplanes, however, the drag variation due to
both these effects is negligible. Consequently, CD& Is taken to be zero.
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The derivative Cye is the change in pitching moment coefficient with
respect to G, the time rate of change of the angle of attack. I+ is quite
important in longitudinal dynamics, since it is involved in the damping of
the short period mode. A negative value of Cpg increases short period
damping; thus, high negative values are desirable. This derivative is actually
caused by a lag effect of the downwash at the horizontal tail of the aircraft.

War Report WR L-430 (Ref. 23) is considered to give the best derivation
of an empirical formula for Cmg based on the lag of the downwash between the
trailing edge of the wing and the horizontal tail. The downwash at the tail
at the time t depends on the angle of attack of the wing at the time

2,‘
ok
U
where
E; = length from the quarter chord of the wing
23 to the quarter chord of the horizontal tfail
U—-= fag time of the downwash

The angle of attack of the fail, a,, can be written as
O, = Qy - € = iw * it

For a given maneuver, the angle of attack can be written as a function of time,
o = f(+). Thus, expanding the downwash in a Taylor series and ignoring
second order terms, the downwash can be written as a function of (+ - At) as

e = 28 £+ - AD)
o0

where L7
at = L
U

As a simplifying technique, f{(+ - At) can be expanded in a Taylor series as

(At)2 _ (o)
6

FOF) = AT £100) + =5 €11 (1) TARRECOUR

f(+ - At

Thus,

2 3.
(A;) o ié%l—-a + ...}

=gy {0 - At o +

m
|

A quantity s is now introduced to non-dimensionalize &, where

s - 2ut
C
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Therefore, & can be expressed as

L]
N
c
a
Q
N
o=
a
e

and-a can be expressed as

oooAa?_ d%
C 4U 2
d(C T
The downwash can now be written in terms of g as
% ge | 2D
€ =¢y {la -2— > + 5 o - ...
© a1 d(= 0?2

The equation for ax can now be written, with the above equation substituted
for tThe downwash, as

. . 2% do, | ,2%%.2 d2g
o, =0y - Ty F i, - gy {a - - ag—+ (—E_) preaie v}

Since o and a, refer to the same angle of attack,

287 (225)2
_ . . t do “C_ 2
o, =oll —ey) + i, - Iy + gy — Tt __Er___ggg._ e

Since Cpe results from the lag of the downwash at the fall, only the tail
contribu¥ion o the pitching moment must be considered when Cys is derived.
The part of the piftching moment coefficient contributed by the tail can be
written as

where

2. = distance from c.g. To # chord of tail

Since Gy is a function of tail angle of attack, The expression derived above
for o, can be substituted info the Cy formula to yield

297

. S 287 (Z )2
_ 2t 27t do T d*a
Cp = - CLut N 2 3, lot1 - ey) + &g — 35 - € —— Tt ...}

The partial derivative of Cp with respect to da/ds can now be expressed as

9Cn Lt S 28%
0 (a‘s-)
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or

3Cy, R 8. Sy
Cme = —— M = = 20 € (=D (=5 2Ly
o 3(29-&) Lat c ¢ 5,

I+ should be noted that Tthe above formula agrees with the one developed in
Perkins and Hage (Ref. 11), except for the manner in which & is non-
dimensionalized. It should also be pointed out that Cy: can be found from
+he above equation by merely differentiating with respect to d%a/ds?. |In
general, however, angular accelerations are considered small when |inearized
equations of motion are used and there are only small disturbances from
equilibrium. Thus, for light airplanes, Cpy would not be of great importance.

A typical range of Cys for a light airplane is -3.0 to -7.0. For the
Cessna 182, Cpg was calculated at -5.24.
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The stability derivative CLgq represents the change in airplane 1ift with
varying pitching velocity while the angle of attack of the airplane as a whole
remains constant. Contributions are made by both the wing and horizontal
tail, but the tail is by far the more important. The general concensus is
that C|_$ plays only a minor part in estimating the longitudinal response of the
aircraff.

Volume V of Aerodynamic Theory by Durand (Ref. 24) explains the physical
phenomena associated with CL,. Figure 12 shows that an alrplane flying with
velocity U in a circular flight path of radius R and center O has an angular
velocity, d8, such that U = R(d8/dt) and o is constant.

do

Figure 12. Pitching at constant a.

For small perturbations, (d6/dt) = q (Appendix A). |f the airplane c.g. is
traveling with velocity U while the airplane is rotating with angular velocity
q, the direction of motion of any point on the tail, distance %4 behind the
c.g., makes an angle tan~'(q%+/U) with the direction of motion of the c.g.
Provided gf¢ is not too large compared to U, the effective incidence ot the
tail is increased by approximately gft/U radians.

The wing contribution to C|l 4 can be explained in much the same way. The
change in angle of attack of the wing (measured at the aerodynamic center) is

X - X
Ad = - q C.g. a.c.,
U
where
Xc.g. = distance fo the c.g.
Xa.c. = distance to the a.c.

This expression indicates that there is a reduction in {ift if the c.g. is
behind t+he a.c. and an increase if the c.g. is in front of the a.c. For a
c.g. very near the a.c., the wing contribution is negligible; however, the
wing contribution increases as the distance between the c.g. and a.c.
increases. It is felt that, for light airplanes, the fuselage contribution
to CLq is smaller than that of the wing; thus, it is neglected here.
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A theoretical derivation of CL, can be obtained from WR L-430 (Ref. 23)
by modifying the Cy, derivation to be disgussed later. At the horizontal
tail, the angle of attack is increased %2:6/U by pitching. The total |ift
coefficient is, therefore, increased by the amount

246 S¢
AC| = —C N
L U LOL-{; Sw t

where
Chx = tail Iift curve slope
t
The following expression is used as a non~dimensionalizing ftechnique.
- 24 b
6 = C (2U>
Thus,
Lt 2u cb S¢
AC| =0 (E—'-éU) Ldt ‘S';"T'It
Differentiating with respect to (c6/2U)
9CL 28 S¢
B(Cé) R S 't
2U° Ttaj
or
BCL _ 2% Et
=7¢ Cla, 5, Mt
3 (S ¢ T Sw
U | 4ai

The wing contribution can be obtained similarly by substituting the distance

from the c.g. to the wing quarter chord * for the distance zt. Thus,
oC -
35D c
2U
where
x” = distance from c.g. to wing quarter chord
(positive for c.g. ahead of quarter chord,
negative for c.g. behind quarter chord)
CLa = wing |ift curve slope
* At this point it is assumed that the a.c. of the wing is very near the

wing quarter chord; therefore, the quarter chord is used as the reference.
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The airplane C; becomes

aC 5C . 2
R Yesh 3(S9) c ¢ U Sw
2U wing 2U l4a1

For the Cessna 182 aircraft investigated later in the paper, the c.g. is
located very near the quarter chord and the wing contribution is Therefore
neglected. The value of aircraft CLq was calculated to be 3.9,
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The stability derivative Cp, is The change in drag of the airplane with
varying pitching velocity while $he angle of attack of the airplane as a whole
remains constant. This derivative has contributions from both the wing and
The fuselage but both contributions are very small. In all of the |iterature
for subsonic flight, Cp, is ignored because it is really unimportant in
analyzing flight dynamigs and very small in magnitude. CDq for the Cessna
182 is taken to be 0.
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The change in pitching moment coefficient due to a change in pitching
velocity constitutes the stablility derivative Cp,. |f an alrplane has a posi-
tive pitch rate with a constant angle of attack ?flying a curved flight path), the
angle of attack at the tail is increased, thereby adding more positive |iff
to the tall and creating a moment o oppose the pitching motion. For tThis
reason, the derivative is sometimes referred to as the "pitch damping" deriva-
tive and is usually negative. The wing contribution to Cp, either opposes
or increases the pitching motion, depending on the c.g. Ioga+ion (see dlscussion
of CLg); however, this is relatively insignificant compared to the tail
contribution. The fuselage contribution is always neglected for light air-
planes.

This particular derivative is very important in longitudinal dynamics
because it plays a major role In the damping of the short period mode and a
minor role in phugoid damping. High negative values of Cp, (-10.0 to -15.0)
usually insure good short period damping for light airplanes.

* Cm, can be considered a sum of moments due to the component parts of

CL Consequentliy,

q-
aC,, 2+ OCL
Cngtail © g ST L
3 ) (5
S tail 207 Vtail
(The negative sign appears because Cmgtai| is always negative, while CLQT 0
is always positive) and al
aC “| aC
R _ oIkl L
wing 59 | © ED
20" twing 2u wing
where
|x“] = distance from c.g. to wing quarter

chord (always positive).

The sign of Cmqying §s opposite that of ClLq,ings thus, |x*]| is used instead of

x”“. When the a.c.”in front of the c.g., LLQWing is negative but Cmeing is
positive. The total Cmq is

2x” - 22'1;2 S¢
Cng = = 2= Xl Cy - 2 Chut Sy Nt
where
x” = distance from c.g. to wing quarter chord
- (positive for c.g. ahead of quarter chord,
negative for c.g. behind quarter chord.
|x*] = magnitude of x*

The value of Cmq calculated for the Cessna 182 is ~12.43.
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The change in |ift coefficient due to elevator deflection is the stability
derivative CLgp. Since downward deflection of the elevator is defined as
positive, producing a positive lift, CLgr is normally positive in sign. Many
erroneocusly consider tThis derivative to Ee the same as the change in equilibrium
lift coefficient with respect fo elevator deflection, in which the elevator
deflection causes a change in the angle of attack, resulting in wing and tall
l1f+ changes. For the derivative CLg., The elevator angle is the only quantity
which can change; thus, the angle of attack as well as all other angles must
remain the same. Clgp does not appear in the characteristic equation of the
aircraftt, but it does appear in the numerator of the transfer functions; it
therefore affects the gain of a particular ftransfer function.

For a conventional aircraft with the horizontal tail mounted an appreciable
distance aff of the center of gravity, CLgg is small, approximately 0.1 to
0.2 per radian. For light airplanes with relatively large tails, CLsg may
take on values between 0.3 and 0.5 per radian.

NACA TR-791 (Ref. 25) mentions that CLge is usually obtained from wind
tunnel data; however, an empirical relation Erom Reference (11) can be used
to approximate Clgp:

C

CL(SE =
where
(dCLt)/(dat) = |ift curve slope of the tail

and doat/dSg is plottedas a function of elevator area divided by tail area
(Figure 13), where SE/St = 1.0 for all-movable tail.

8 —

6

dat 4
dég
£ 2|/

0 1 2 3 4 5 6 7
Sg/ S¢

Figure 13. Elevator effectiveness.

The derivative can be estimated more exactly by using the two-dimensional
data available in Reference (19) and merely correcting for aspect ratio. The
data presentfed are for the 0009 airfoil and are useful, therefore, for most
light airplanes (Figures 14 and 15). Dommash (Ref. 19) mentions that the data
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given for the NACA 0009 airfoil with a plain flap illustrate the principles
involved and are not intended as exact engineering design data; however, the
data should give results well within the satisfactory requirements.

Figure 14,

Figure
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unsealed flap and 0.005c gap.
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The two-dimensional values of CL5¥ found above can be changed to Cgg. corrected
i

for aspect ratio using the correc

on procedure given in Reference (?O) for

flapped wings:

where

66
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CgsE = section |ift curve increment due to flap (elevator)
deflection (this derivative should not be confused
with the rolling moment coefficient appearing in
the lateral dynamics).

CLat = |ift curve slope of tail without flap deflected
(3-D)

Cpy, = section lift curve slope of basic airfoil

t

= ratio of 3-D flap effective parameter to the 2-D
(aa)c flap effectiveness parameter obtained from the
. figure below as a function of wing (tail) aspect
ratio and the theoretical value of (aglcg. The
theoretical value is also given as a function of
flap chord to airfoil chord.
Ky = flap-span factor which is = 1.0 for elevator
horizontal tail surface for light airplanes.
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Figure 16. Flap chord factor.




For most light airplanes, (ag)g /(agdgy = 1.0 fo 1.1; CLy, and Cgyy can be
estimated using the procedures &numera%ed for Cly., and Cgg,. Can be esTImaTed
using the graphs for the 0009 airfoil. The formula for CL§g based on wing

area can then be written as
Clag, @8c s¢

Clog = Case lg ] [(aa) ] 5, Nt

or, since (a5)CL/(a5)Cz is approximately 1.05 for most light aircraft,

c t St
CL8E = (1.05) CQGE az;;'g;'nt.

The value of CLaE calculated for the Cessna 182 is 0.427.
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The change in drag coefficient due tfo a change in elevator angle is the
confrol surface stability derivative Cpgg. For an elevator of reasonable
size, the total airplane drag does not cEange appreciably with elevator
deflection. For this reason, CDSE is oftfen neglected. The characteristic
equation of the aircraft is not a function of Cpgp; Thus, Cpsp affects only
the gain of the particular transfer such as u/6g.

Probably the best method of estimating Cpgg is fto perform wind tunnel
tests on a particular aircraft model; however, if wind funnel festing is not
feasible, Cpgg can be approximated by using data from wind tunne! tests which
have already Eeen performed. NACA TR-688 (Ref. 26) discussed the aerodynamic
characteristics of several horizontal tails. Using the figures below and the
appropriate graphs, Cpsg can be estimated. Five tail shapes from NACA TR-688
were chosen for inclusion in this analysis. To estimate CDgp, The fail
surface which is most fike the one in question should be useg. The numerical
value of Cpge can be taken from plots of Cp versus o for different elevator
deflections gor each tail surface; however, the values of CDdE must be
mulfiplied by St/S so that Cpgg will be based on wing area.

}
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L—L 11.1”
3.3"Jy
i
(1) (2)
T - N o
qeg ! j 7i3 o.87 ( g | ) ¥ agr
~—1 1 — | 25" § : — 367 |
¥ LB ?
39.47— - 39.47
(3 (4)
5?1"7
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47" l

0
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i

394™

.

(5)
Figure 17. Five tail surfaces selected from NACA TR-688 (Ref. 26).
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Drag Coefficient

against angle of

attack at various

elevator deflec-
tions for tail
surface 1.

Tail Span S¢ Se Cy Test y Test
Surface AR (in.) (sq. (sq. (in.) (fps) R
N
in.) in.)
1 3.4 155 7015 2450 45,25 88.0 1,960,000
2 3.1 23.6 181 68 7.68  110.0 448,000
3 4.3 39.4 361 81 9.15  ~—ecmm | mmmmeae-
4 4.3 39.4 361 117 9.15  —emmm o,
5 4.3 39.3 356 162 9.06 —==m= mmme—eeee
Table 8. Dimensional characteristics for horizontal tfails.
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Figure 19. Drag coefficient
against angle of
Figure 18. Drag coefficient attack at various

elevator deflec-
tions for tail
surface 2.
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Drag Coefficient
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The stability derivative Cygr is the change in pitching moment coefficient
with changes in elevator deflection, usually referred fo as "elevator power"
or "elevator effectiveness." |[f Cnge and the maximum deflection of the elevator
are known, the maximum rotation moment which the tail can exert can be esti-
mated. It must be remembered that Cmgr is evaluated without allowing the
airplane to rotate or any other paramegers to change; thus, Cmgg is really

the moment produced by Cge- \

The primary function of the elevator is to control the angle of attack
of the airplane in equilibrium flight or in maneuvering flight. Depending
on the maximum al lowable forward center of gravity travel, the horizontal tail is
designed to give enough tail power in all flight conditions to control the air-
craft. |If the needed tTail or elevator size is entirely unreasonable, the desired
c.g. travel may have to be limited. For all practical purposes the maximum
practical Cmgg determines the maximum forward center of gravity travel.

Since a positive elevator deflection is defined as down, a positive elevator
deflection gives a negative pitching moment contribution, making the sign of
Cmgg negative. A desirable value of Cpg cannot be stated in general for all
aircraft because each case must be analyzed separately. For most light air-
craft, however, Cm5E should have a value between-0.75 and 22.0.

The numerical value of Cpgp can be obtained by muitiplying Cigp by the
distance from the c.g. to the fail guarter chord divided by the wing mean
aerodynamic chord:

-2
-t
Cm(SE - c CLGE

The negative sign appears because Cig- is positive and Cpmgg must be negative,
as discussed above. For The Cessna 152, Cmgg was calculated to be-1.28. In
the experimental case used for this study, fthere is a contribution to Cmgp
due to the moments about the a.c. of the horizontal tail; however, This
contribution is so small it is usually neglected.
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The stability derivative C g Is the change in side force caused by a
variation in sideslip angle. ern the airframe has a positive sideslip, B,
the relative wind strikes the wing, fuselage, and vertical tail obliquely
from the right, resuiting in a negative side force. The major contribution
to C g comes from the vertical tail, with a smaller contribution from the
fuseYage and a nearly negligible contribution from the wing. This derivative
contributes to the damping of the Dutch Roll mode; thus, large negative
values of Cyg might seem desirable. Large negative values of Cyg, however,
may create a large time lag in the airplane's response and cause it to react
sluggishly to the pilot's commands.

In estimating values for Cy,, force-test data for the design in question
should be used, if possible. According to TR-1098 (Ref. 27), interference
effects are so large that a generalized formula would not be completely
satisfactory. Instead, a method of correcting data of a similar design for
use in analyzing the design in question is recommended. A more recent
publication, Datcom (Ref. 10), probably gives the most accurate method,
since interference effects based on experimental results are included.

The wing contribution to C is small, on the order of a? (angle of
attack in radians), so its accurate estimation is not vital to the total CYB'
For swept wings, TN-1581 (Ref. 28) gives the following formula for Cyg of
the wing:

6 tan A sin A
(Cygdwing = CL>
YB'wing = *L r AR(AR + 4 cos M)

(per radian)

For zero sweep (A = 0°), (Cy Ywing 1s equal fo zero. TR-1098(Ref. 27) states
that the above formula is noé satisfactory in practice and that no correction
of (Cyglwing Ts necessary for similar designs since this contribution is so
small. The method in Datcom (Ref. 10) gives the effect of wing dihedral on
Cyg as fol lows:

(Cyglwing = —-0001 |T| per degree,
where I' is in degrees.

The fuselage contribution is greater than that of the wing and may be
estimated by a method adapted from Datcom (Ref. 10). The basic relation is

Body Reference Area
(CYB)fUS = - Ki (CLq)fUS ( Sw ) >

where
Body Reference Area = (fuselage volume)2”?,

Ki = wing-fuselage interference factor
obtained from the graph below,
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zy = distance from body centerline to
quarter-chord point of exposed
wing root chord (positive for
the quarter-chord point below
the body centerline),
d = maximum body height at wing-body
intersection.
L8] B 71
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Figure 23. Values for wing-fuselage interference factor.

TR-540 (Ref. 9) gives values of (CLa)fus as .0525 per radian for round fuse-
lages and .1243 per radian for rectangular fuselages. Observation of these
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data indicates that, for most conventional light aircraft, the value of (Cyglsys
is small.

The verfical tail is the most important contributor to Cyg, and (Cygliai|
is used in the calculation of tail effects on many of the other lateral stabil-
ity derivatives. TR-1098 (Ref. 27) gives the following formula for adapting
(Cyg)t+ai| of a similar model to The design under consideration:

[(CLa)TaII STail]design Sdata

[Cyg)tait]gesign = [Cygltaiilgata -
[(CLa)Tail STail]daTa Sdesign

The subscript "design" refers to the new configuration, and the subscript "data"
refers to the configuration for which (Cyp)ia1| is already known. Datcom (Ref.10)
presents probably the most comprehensive method of obtaining (Cygltail yet
developed. [In this method, the following formula is shown:

_ 3o, 9v Sy
(C\/B)‘I‘ail = -k (CLa)V (1 +§‘é‘ E‘g;" .

The value of (CLy)y must be determined, using the effective aspect ratio
of the vertical tail, to convert the two-dimensional |iff-curve slope to the
three-dimensional value. The importance of this approach is stressed in WR
L-487 (Ref. 29), in which data of free-flight tests show that, for vertical
talls of the same area, with the aspect ratio increased from 1.0 to 2.28,
effectiveness increases 67%. The value of k, an empirical factor, may be
obtained from the following graph as a function of the ratio of vertical tail
span to fuselage diameter in the tail region, (by/2r1).

1.2
.8 /
K
4
0
0 1 2 3 4q S 6

bv IZrl

Figure 24. Values for k as a function of the ratio of vertical
tail span to fuselage dlameter In the tail region.
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The value of the combination sidewash and dynamic pressure ratio parameter for
zero sweep is the empirically-derived expression,

Sy Zw
(1 +55) o~ = .724 + 1.53 (Sw) + .4 g + .009 (AR),

where
zy = distance, parallel to z-axis, from wing
root quarter-chord point to fuselage
centerline,
d = maximum diameter of fuselage.

A comparison of calculated values of this parameter (using the above formula)
with ftested values indicates that the average error is less than five percent.
Putting together each of the components, the following formula from Datcom
(Ref. 10) for total Cyg results:

Body Reference Area

(Cyg)total = = Ki (CLylfus s, ) ~ .0001]|T|
30, 9v Sy
-k (C )y (1 + =) —— .
Lg’V 38 q Sw
Incorporating the above formula and the characteristics of a ftypical light
airplane yields CYB = -.31 per radian, which seems to be a typical value.
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The stability derivative Cg,, normally referred to as the "effective
dihedral derivative," is the chaﬁge in rolling moment coefficient caused by
variation in sideslip angle. In popular usage, a "positive dihedral effect™
means a negative value of Cg,. During aircraft sideslipping, the rolling
moment produced is the resulé of wing dihedral effect and the moment resulting
from the vertical fTail center of pressure located above the equilibrium x-axis.
For most conventional configurations, the value of Cgg is negative; however,
this value can easily be adjusted by changing the amount of built~in wing
dihedral.

Cgp is quite important to lateral stability, since it aids in damping
both the Dutch Roll mode and the spiral mode. For favorable Dutch Roll damping
characteristics, small negative values of CQB are desired, but for improved
spiral stability, large negative values are necessary. A compromise is Thus
in order, as indicated in TN-1094 (Ref. 30), which shows that best general

féighf behavior is obtained when the effective dihedral angle is approximately
2°.

In actual practice, Ceg I8 usually not determined analytically because of
the large errors involved as compared with force-test data on the design in
question. |If possible, force-test data should be used to determine the amount
of wing dihedral, thus determining the value of Cg,. An analytical approach
for straight and level flight (B = =) is given in Perkins and Hage (Ref. 11)
for calculating Ceg of the total aircraft. This formula is given below,
followed by a discussion of methods for obtaining each component:

(Cag)total = (Coghw *+ (Cagly + (ACq)y + (ACpa)7 + (Cgg)y,r=0
From Perkins and Hage, the wing dihedral contribution to Cog 1s
CQB
(C,Q,B)w = (—F—O I+ (ACQB)Tip shape

The effect of wing tip shape on the value of ACQB is shown below.

Maximum Ordinates
On Upper Surface

L e ACy* --0002

Maximum Ordinates
On Mean Lines

C e AC) 5" 0-0

Maximum Ordinates
On Lower Surfaces

r N ACyg= -0002

Figure 25. Effect of wing tip shape on Cyg
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The value of (Cg,/I') for a particular aspect ratio and taper ratio may be
obtained from thé following graph.

-.0003 T
’,—*’:::::A=1
Azs
c -.0002 A/
1 - —
—8 // A=o
r <“_’,——
(per degz) //
~.0001 /
o
0 2 4 6 8 10

Aspect Ratio, AR
Figure 26. Values for (CQB/F) for various aspect and taper ratios.

A theoretical study for unswept, elliptical wings with zero dihedral is
presented in TR-1269 (Ref. 31), producing the following equation for wing
contribution to CQB:

(Coplyw.= Ci |- + .05 er dian
20, L= 5 ] per radia

Also presented is a revised formula, which considers changes in taper ratio:

(Cyq )w = CL[' k71 A+ .29) + .05] per radian
B8 20 AR A
where
k = 1.0 for straight wing tips
k = 1.5 for round wing tips
If the vertical tail is located above the longitudinal axis, the vertical

tail contribution is easily calcufated from computation of the normal force
caused by sideslip. Thus,
SV Zy
(CQI )V = - av_—_—nv = - (Cn )V"‘
B Sw by B g,

where
zy = distance from the center of pressure of the
vertical tail to the airplane's x-axis (positive
for vertical tail above the x-axis).
77



Most studies on this subject consider two inferference effects on the vertical
tail--wing-fuselage and wing-vertical tail interference--both influenced by the
wing's location. These effects are ftabulated in Perkins and Hage, as shown

in Table 9.

Wing-fuselage Wing-vertical Tail
(AC28)1 (ACQB)z
High Wing -.0006 .00016
Mid Wing 0 0
Low Wing .0008 -.00016

Table 9. Values for interference effects on the vertical tail
per radian.

Typical values of CRB range from =.03 to -.12 per radian.
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The stability derivative Cng, often called the "weathercock" or static
directional derivative, is the change in yawing moment coefficient resulting
from a change in sidesliip angle. Physically, Cnhg is the result of the airframe
sideslipping, with the relative wind striking it obliquely, causing a yawing
moment about the center of gravity. The vertical tail, fuselage, and wing
contribute to Cpy, with the vertical tail the dominant factor. For positive
sidesl ip, the vertical tail causes a positive yawing moment; thus, Cpg Is
usually positive, even though the fuselage contribution is normally negative.
The wing contribution is usually positive, but quite small compared to that
of the vertical tail and fuselage.

The value of Cpg determines primarily the Dutch Roll natural frequency
and affects the spiral stability of the aircraft. It is generally agreed that
values of Cphg as high as practically possible are desirable for good flying
qualities. ealues for Chg should be obtained from force-test data for the model

in question where possible.
+ At present, two analytical methods of calculating total Cpp appear most
complete. The first is that presented in Perkins and Hage (Ref. 11) for

straight, level flight (B = -y). The value of Chg for the total plane can be
obtained from the composite formula,

(Cngltotal = (Cnglw * (Cpglfus * (Cngly + 81Cpg + AzcnB
Perkins and Hage also give a value for (CnB)w as
(Cpgly = -00006 (A)17? per degree
For unswept wings, TM-906 (Ref. 32) gives

C-2
L
Crglw = ATAR

per radian

This formula is modified in TN-1581 (Ref. 28) for sweep, by the following
relation:

1 tan A AR AR?
= CL? - Ao
(Cnglw = CL [¢nAR 7 AR(AR + 4 cos M) (°°° 2  8cos A
+ 6 § S'RRA] per radian
where
X = longitudinal distance- rearward from

c.g. to wing aerodynamic center
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A value of (Chp)fys can be obtained from Perkins and Hage by use of
ng’fu g

_ -.96 Kg Sg Lp. b 12 M2 13
(Cng)fus = 573 (Sw) (Fv—v-) ('t-{;) (W-{-)

The value of Kp, an empirical constant, can be obtained from the following
graph as a function of fineness ratio and c.g. location. The distance from
the nose to the c.g. is d; Sg is the body side area. The other variables are
shown below.

-3 25 ///
)%
2 P/ s g // A
|iZgs s 28
A A =R
-1 //V
Z anmn=n
-2 .:/lb .6 -8 1.0

Figure 27. Empirical constant Kg as a function
of fineness ratio and c.g. location.

Perkins and Hage also present the following formula for vertical tail
confribution to Cpg:
Sy &y

(Cnglv = ay 5, B, v

The value of a,, lift-curve slope of vertical fail, is determined by using the

effective aspect ratio, which is calculated
2

b
Ae = 1.55 ——

SV

The value of a, can now be obtained from the following graph for a particular
value of Ae. This value is based on a conventional, low horizontal tail
configuration; therefore, for designs significantly different, one is referred
to Datcom (Ref. 10) for an alternate method of finding Ae.
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Figure 28. Values of a, as a function
of vertical tail aspect ratio.

The vertical tail efficiency factor, n,, is also needed for the design in
question. Two interference factors must be determined to compliete the calcu~
lation of total Cpy. The first of these, A1Cphp, is the wing-fuselage inter-
ference factor, a @uncfion of wing location. %he following chart is used to
determine its value.

WING POSITION A1CnB PER DEGREE
High Wing . 0002
Mid Wing . 0001
Low Wing 0

Table 10.  Values for AiCpg as a function of wing location.
The second interference factor, AyCpp, is the result of sidewash at the vertical

tail caused by wing-fuselage interference. |ts value may be determined from
the following graph as a function of wing position and maximum fuselage height.
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Figure 29. Values for A3Chp as a function
of wing position and maximum
fuselage height.

Now that each of the components has been determined, the value for total
Chp, Using the method of Perkins and Hage, can be evaluated. They indicate
that a Cng 2 .0005 (V"W /b) is necessary for adequate directional stability.

The second method of obtaining total Cn, is presented in Datcom (Ref. 10)
where a wing-fuselage correction is added to the vertical tail contribution,

resulting in

Body Side Area ‘b %

(CHB)TofaI = - K Sy by (Cy3)+ail E;

The interference factor, K, (per degree), may be determined from the following
graph as a function of aircraft geometry and Reynolds Number.
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The value of (C B)fai[ may be obtained from the discussion of the stability
derivative CYB Yn the present study.

For light aircraft, typical values of C,, seem to range from 0.03 to
0.12 per radian. B
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Cy,

The stability derivative C is the change in side force resulting from
rolling velocity, with the vertical tail the main contribufor, even though,
for some configurations, the wing may make a significant confribution. The
rolling velocity, p, creates an effective angle of attack on the tail, which,
in furn, produces a side. force. The sign of Cyp may be either positive or
negative. It is relatively insignificant and commonly neglected.

In TN-1581 (Ref. 28), a completely theoretical approach, the following
formula for Cyp of the wing is presented:

- C AR + cos A
p_ “LAR+ 4 cos A

Cy tan A

For zero sweepback, this formula gives C p = 0.0, which agrees with ofther
theoretical treatments. From wind tunnel Tes¥s on wings alone, TR-968 (Ref. 33)
adds C{ /AR fo the above formula to account for wing tip suction, resulting in

AR + cos A tan A + l—J

Cy =0C
yp T L bAR 7 7 cos & AR

This reduces to Cy, = CL/AR for zero sweepback, which does not appear small
enough to be consiBered negligible.

The wing contribution is usually minor compared to the vertical talil
contribution. From NASA MEMO 4-1-59L (Ref. 34), using a theoretical method
of discrete-horseshoe-vortices, with the horizontal tail in the mid-position,
a value of (Cy )taj] is (-.8)[by/(b,/2)] for the vertical tail contribution.
Also, in TR—T%BG (Ref. 35), a formula for tail contribution is

(Cy Vtgi] = v [- Z ¢ g, sina) + (22— ]
yp tail = (CLG)¥efT'Sw -5 (zv cos a - &, sina) + pb. av
ai W a(57)
2U
where
zy = height of vertical tail center of
pressure above the longitudinal axis
o = sidewash angle at the vertical tail

The ratio (30/[3(pb/2U)])av is the average effect of sidewash on the vertical
tail and can be obtained from the following graph as a function of angle of
attack and vertical tail to semispan ratio for a wing with aspect ratio in the
vicinity of 6.
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Figure 31. £Estimation of average sidewash angle at
the vertical tail with wing aspect ratio
equal to 6.

In TR-1098 (Ref. 27), +he relation for fail contribution is

- Voo A :
(Cyp)+ail =2 B;" (B;QQ = 0] (Cypltail

which seems quite small for cruise at an angle of attack near zero.

Datcom (Ref. 10) also presents a method for calculating Cy,, but, for
conventional light aircraft with zero wing sweep, 11 appears that Cyp is very
near zero. The following formuia is taken from this work:

Cy (ac, Jp
Cyy = (B € + (— TP Cy

The following graphs, which have been adapted from Datcom for |ight aircrafT,
show (Cy
as a fungfion of dihedral angle.
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Figure 32. Values for (C, /CL) as a function of
wing sweep and"taper ratio.
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Figure 33. Value§ for [(ACY )7/ (Cy, ) = O] as a
function of dihedral anBIe.

TN-4066 (Ref. 36), which uses flight measurements to determine stability
derivatives, states that, in practice, Cy, may lie between 0.3 and -0.3. Using
This range of C p? the other stability derivatives were calculated, with Cy
showing a smal!l effect only on Cyg and Cnp. Thus, it appears that Cyp = O.B
is probably as accurate an estimate as Is necessary.
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The stability derivative Cg,, the roll damping derivative, is the change
in rolling moment coefficient due to variation in rolling velocity. For a
positive roll, Cq.  is the result, primarily, of an increase in |ift on the
down moving wing End a decrease in lift on the up moving wing, thus creating
a moment which opposes the motion of the roll. This moment is negative,
making Cgy negative in sign. The wing, horizontal tail, and vertical tail
contribute to Cg,, with the wing the dominant factor for airframes with
conventional-size tails. Cg, is the principal determinant of the damping-in-
roll characteristics of the aircraft.

The basic wing confribufion to Cg, may be found from the graph below as
a function of aspect and taper ratio for a wing with zero or small sweep, a
|ift coefficient of zero, and |ift curve slope of 2w. For swept wings, The
reader is referred to TR-1098 (Ref. 27), from which this figure was adapted.

(]
E
N
n ‘.2 .
< \\ 0.0
- T \
l°l x-l A=.5 \V\_
- =1.0 -
(5] -4 ‘
= —
\?/ "\
=6
0 2 4 6 8 10

Aspect Ratio, AR

Figure 34. Wing contribution to Cg, for wing
with zero or small sweeb.

The present study assumes a linear [ift curve slope with no correction
for non-linearities in lift coefficient. In order to use Figure 34 fo calculate
wing Cgpy for lift curve slopes other than 2m, several means of correcting the
data must be considered. TN-1839 (Ref. 37) presents the following method:

R+ 4 cos A ]

A
(Copliay),, = (Coplag = 2n/rad [
p"lao’y p (ZTT

Yy AR + 4 cos A
(ag)y,

which, for zero sweep, reduces to

(Cey)(ay). = Coday = 21/rad [R~4 l
Pro%w P (2T ) AR + 4
(ap)y
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The effect of wing dihedral on Cg. is considered by TN-1732 (Ref. 38) in
a correction for wing Cg.; however, siRce most light aircraff have dihedral of
seven degrees or less, TRis correction appears quite small. The drag contri-
bution to wing Cg. is given in TN-1924 (Ref. 39), for swepT wings with elliptic-
chord dis+ribu+iog, by the foliowing formula:

1 C? . 2 » AR + 2 cos A 1
Ywing = (Cay) g |1+ 2 A -Lep,
(Caplwing = (Cp)(a0)y ~ 8 1 AR cos? & [ S AR ¥4 cos n| B Do

which reduces, for zero sweep, to the following relation:
2
1

R L - 1
Caplwing = Copliag)y ~ 5 GaR + C0o? = (Cop)tag)y ~ B Coy

where
Cp = experimentally determined drag coefficient.

Thus, for an aircraft with a linear lift curve slope, small dihedral, and
zero sweep, the following formula for wing Cgp results:

AR + 4 1
(Clp)wing = [(Clp)ao = Zﬂ] [ o 4] - §'CD .
(W)AR + 0

By considering the horizontal tail as an isolated airfoil, the basic value
for (Cg . )p may also be determined from Figure 34 as a function of horizontal
fail aspect ratio, taper ratio, and amount of sweep. This procedure is The
same as that for calculating the wing confribution; thus, (Cp )y must be
corrected for |ift curve slope other than 2m. The value obtained is scaled
down by the method of TR-1098 (Ref. 27):

~ Sh ,bh., AR + 4 cos A
(Czp)h = 0.5 5, (5—0 (Ckp)ao = 2n/rad [ 21 A

W AR + 4 cos

(ao)h

The factor 0.5 is included to account for the flow rotation at the fail caused
by the wing; A is the amount of sweep of the horizontal tail. The horizontal
tail is assumed to have negligible dihedral.

The vertical fail contribution fo Cgp is also given in TR-1098 (Ref. 27):

(Cg ) —2(2—")2(0 Ymt
«QapV— bw YB'fal"

or Zy

- Zy Zv
(C'Q'p)v =2 (B.\;) By " (BW)OL = 00] (CYB)'I'ail ’

where
zy = height of center of pressure of vertical tall above
The x-axis (different for each angle of attack).
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From these formulas, it is obvious that the vertical tail contribution is
negligible at low angles of attack. A much more elaborate formula for
estimating vertical tail contribution is given in TN-2587 (Ref. 40), but
because of the relative unimportance of this contribution fo fotal Czp, that
method is not Included.

In summary, for an aircraft with zero sweep a value for total Czp may
be obtained by simply adding the various contributions as follows:

1
(Cop)total = [(Coylao = 21] PR A -gCD
P P ((aig AR + 4| 8
W

Sh,bh
+ 0.5 g;(g;

AR+ 4 |
27 J
(5T AR + 4

)2 I (Clp)ao?.Z'n'I

Zy Zy Zy ]
+ 2.0 (B;J By = ‘Byla = 00 (CYB)+ai|

An adaptation from TN-1309 (Ref. 41) for various sideslip angles is

(Clp)ToTal = [(Cﬁp)fo+al]g = QO cos? B

Typical values of Cgp range from -.25 per radian to -.60 per radian.
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The stability derivative Cp, Is the change in yawing moment caused by
rolling, with the wing and vertical tail the main contributors. For a
positive roll, the produced yawing moment is a result of the unsymmetrical
[1f+ distribution causing increased drag on the left wing and decreased drag
on the right wing and is, therefore, negative. The vertical tail contri-
bution may be either positive or negative, depending on tail geometry,
angle of attack, and sidewash from the wing. ODufch Roll damping is influenced
by Cpn, in tThat the larger its negative value, the less Dufch Roll damping.
tTherefore, a positive Cnp is desired.

Using an elliptical lift distribution, Perkins and Hage (Ref. 11) give
the following formula for Cnp:

The results of wind tunnel! testing on a wing with AR = 5.16, A = 1.0, and
0° wing sweep is reported in TR~968 (Ref. 33). The resulting formula for
(Cnp)w, by a curve fitf, is

(Cnp)w = -.043 C - .0044

for 0 < C_ < 1.05. This report shows that, for large C_ (in the stall region},
Cnp reverses signs, and large positive values are obtained. This same frend
occurs at smaller Ci when sweepback is encountered. Below is a formula for
use with sweepback, from TN-1581 (Ref. 28).

- AR + 4 cos A, tan? A Cnp
(C”r>>W-CLAR+4<:osA[‘+6“+ AR 12](CL)A=oo

The ratio (Cnp/CL)p = po as a function of aspect ratio and taper ratio may
be obtained from the following figure.

o
N
-.02 ™
>,
»
-.04 e -
-
s A=1.0
Cn --06 \\
L/Az0° _ 08 =5

-10

0 2 4 6 8 10 12 14 16

Aspect Ratio, AR

Figure 35. Values of (Cnp/CL) for zero sweep.
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TN-2587 (Ref. 40) explains, through the following formula, how the vertical
tail contribution fo Cnp is influenced by sidewash variations:

leg 90
(Ch.dy = 57.3 ay - 1 (zv sin o + %y cos a)[—— (zy cos o = &, sin a) - (——l- 2)]

Values for a01/[a(pb/2U)], effect of wing sidewash, as a function of (h /b

may be obtained from the following graph, reproduced from TN-2332 (Ref. 42? for
wings with aspect ratios in the vicinity of six, where hy is the distance from
the wing centerline To the center of pressure of the vertical tail (positive
above the wing centerline).
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Figure 36. Effect of wing sidewash on vertical tail.
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The effect of fuselage sidewash, 362/[5(pb/2U)], may be determined from the
following formula adapted from TN-2587 (Ref. 40):

oo
T2 _ 9,30 Ay2 3
) by Dy
2U
where Ah zy - (z,, cos a - &, sin a)
bw by,

For zero angle of attack, this sidewash factor reduces to zero and is quite
smal| for low angles of attack. With these factors, a value of (C, ), can
be determined and added to the wing contribution to yield total Cin

(Cnp)ToTaI = (Cnp)w + (Cnp)v

Typical values for C range from -.01 per radian to -.10 per radian.
np
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The stability derivative C is tThe change in side force resulting from
a change in yawing velocity. As The alrframe undergoes a positive yaw, an
effective positive side force develops on the vertical tail, which is the
dominant contributor to Cy.. Since this force is normally small, Cy,
usually has a small positive value.

The wing contribution is normally negligible, as indicated by TN-1669
(Ref. 43), which is the result of wind tunnel tests on rectangular wings with
zero sweep and aspect ratio of 5.16. The following formula is produced by
curve-fitting the data of this report, which gives (CYr)win as a function
of lift coefficient for an angle of attack below the stall Fegion:

(Cy dw = .143 CL - .05.

The tail contribution may be estimated by the formula below from TR-1098

(Ref. 27) which gives (Cyp)tai) as a function of the values for (Cygltaj|
or (Cngltgj| discussed in connection with the stability derivative Cyg in

the present study:

2
(Cy )tail = - 2 EN(CYB)TaiI’
or
(CYr)‘I‘all =2 (CnB)Ta”'

For wind tunnel tests of a model oscillating in yaw, TR-1130 (Ref. 44)
indicates that much larger values for Cy,. are obtained than from other testing
methods. These results are presented graphically in Figure 37, including
fuselage, wing, and tail effects. The fuselage effects are relatively large

and negative in sign.
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Figure 37. Values for fuselage, wing,
and ftail contributions to CYr‘

TN-4066 (Ref. 36), which utilizes flight test data to calculate stability
derivatives, indicates that Cy. could range from -0.3 to 0.3 without showing
any significant effects on the other stabitity derivatives. This helps
demonstrate the insignificance of CYr to the lateral stability of light alrcraft.
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Ci,

The change in rolling moment due to variation in yawing velocity consti-
tutes the stability derivative Cer+ The wing provides the major contribution,
with the vertical tail having a mlnor effect. When there is a positive yaw
rate, the left wing moves faster than the right wing, producing more [ift on
The Ief+ wing and, consequently, a positive rolling moment. The tall contri-
bution may be either positive or negative, depending on tail geometfry and
angle of attack of the airplane. Although Cap has little effect on Dutch
Rol! damping, it is quite important to the spiral mode. For spiral stability,
iT Is desirable that Cgr be as small a positive number as possible.

The wing contribufion to Cg . is presented in TR-589 (Ref. 45) as a function
of 1ift coefficient by the following formulas:

(Cgr) = CL/3 for rectangular [ift distribution,

wing
or
(Czr)wing = C /4 for an elliptical 1ift distribution.

In TN~=1669 (Ref. 43), the results of wind tunnel tests of a NACA 0012 airfoil
of aspect ratio 5.16 and zero sweep indicate that (Cg Jwing = CL/4 agrees with
experimental data for |iff coefficients below the stal | regime. The wing
contribution to Cy_ as a function of aspect ratio, taper ratio, and sweep
angle is presented in Figure 38, adapted from Datcom (Ref. 10).

Ac/4l o |1s* | 30°

d 1.0
1/’//, — .
gy B i Wy S R .
| 4 25

«1 .2 .3 4

Figure 38. Wing contribution to Cq_ as a function of aspect
ratio, taper ratio, and sweep angle.
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The minor contribution of the vertical tail to Cy_ may be calculated
from the formula below from TN-1984 (Ref. 46):

(Cy ) -2 2 e
Lritail = T “ %, by, CYB'tail:
or ,Q,v
Copdtarl =~ 25 (Cogltai

By adding the wing and vertical tail contributions, fotal Cz may be
determined.

Typical values of Cg,. range from .04 per radian fo .12 per radian.

97



Cn

r

Cnp, commonly known as the yaw damping derivative, is the change in yawing
moment due To variation in yawing velocity. As the airframe undergoes a posi-
tive r, a yawing moment which opposes the motion is produced. This moment
consists of contributions from the wing, fuselage, and vertical tail, all of
which are negative in sign. TN-1080 (Ref. 47) states that the vertical +tall
contributes about 70% to 90% of Cnr for conventional designs. The derivative
Cnhr is the main contributor to the damping of the Dutch Roll mode and aiso
plays a significant role In determining spiral stability, making it vital to
lateral stability. For best effects in each of these modes, large negative
values of Cp, are desired.

The wing contribution to Chy as a function of [ift and drag coefficients
is given in TR-1098 (Ref. 27) by the following relation:

(Cnpdwing = CL® [aCnpd1/C ] + Cp, [(ACnp)2/Cp ] -

Originally presented in TN-1581 (Ref. 28), this formula is the result of simple
sweep theory_ with strip integration; consequently, [(ACnr)1/CLZ] and
[(Acnr)z/CDo] are functions of sweep, taper ratio, and aspect ratio. For wings
with zero sweep and aspect ratio greater than five, however, these terms are
constant at the following approximate values:

(ACp )

____E_l.z -0.020 ,
c 2

L
and
(ACnr)Z
= =0.30 .

CDO

With these restrictions, the above formula reduces to
(Cnpdwing = =0.02 C L2 - 0.3 Cp, .
The graph that follows from TN-1669 (Ref. 43) shows, for a rectangular wing,

the close agreement between the above theory and experimental data for wing
contribution to Cn--
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Figure 39, Results of experimental data on
wing contribution to Cpp.

This graph points out the relative insignificance of wing contribution to Cnr-

The tail contribution to Cn, is presented in TR-1098 (Ref. 27), as
follows:

(Cp.)tmi] = 2 (EXJZ (Cyp) ;
np’/tail = < by, yg'tail

Blakelock (Ref. 18) treats this contribution as,

2—5_\_/_(&

- 2 (CL v ny -

Cnpltait = -
W

W
The vertical tail efficiency factor, n,, compensates for the interference
between the fuselage and the vertical tait. When there is no interference,
ny is equal to one. Total Cp. is then determined by adding the wing and ver-
tical ftail contributions, since the fuselage contribution is negligible.

Another approach to calculating fotal Cp. is free-oscillation tests, as
presented in WR L-387 (Ref. 48). These tests on a mid-wing airplane include
effects of wing, fuselage, and vertical tail on Cp.. The wing contribution
is calculated as

_ _ 1+ 3\ AR -6 1 =A -2
(Cnpdwing = =+33 (5453 Cpp = 02 (1 - S55— - 5 ¢ 2,

which, for an aspect ratio of six and taper ratio of one, seems to agree closely
with the previous formula for wing contribution. WR L-387 (Ref. 48) also
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states that the fuselage contribution often ranges from -.003 to -.006, small
enough to be neglected. The vertical tail contribution from Reference (48)

is

'Q'V
(Cnr)-rail = =2 (‘5;) (Cns)_i_ail .

Combining these two formulas, the result is the empirical expression below,
showing Cn, for a conventional, mid-wing airplane:

%
_ v 1 +3 A _AR -6 _ 1 =X o2
Chp = - 2 (E) (Cng)tatt = [-33 (G537 Cp, + -02 U1 = 5=~ CL%]

Typical values of Cn. for general aviation aircraft range from -.05 per
radian to -.14 per radian.
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The stability derivative Cyg, is The change in side force coefficlient with
variation in aileron deflection. For most conventional iight aircraft, this
derivative is zero; however, for an airframe with low aspect ratio and highly
swept wings, it may have a value other than zero.
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Cly,

The stability derivative Cgg,., known as the aileron effectiveness or
"aileron power", is the variation’in rolling moment coefficient with change
in aileron deflection. Since left aileron down is defined as positive, a
positive deflection produces a rolling moment to the right, which is also
positive, making C26 positive. Desirable values of Cgg, are given in terms
of the wing tip he||Q angle (pb/2U) for a full aileron deflection. For [ight
aircraft, this range is normally from 0.07 to 0.08 radians. In Perkins and
Hage (Ref. 11), stfrip integration can be used to evaluate ngA as,

2(C Dy T
_ b
CgaA >y 3 ¢y dy.

e <

— 1

b

l
NN

Figure 40. Illustration of strip integration.

In order to integrate, the chord, c, as a function of the spanwise distance,
y, must be known. For straight, tapered wings, this relationship is

= — -_
c=cg [ 5y (- W1,

where
Cr = rootf chord.

The value of T may be obtained from the following graph as a function of aileron

chord to wing chord ratio.
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Figure 41, Values for 1 as a function of alleron
chord +to wing chord ratio.

The method of strip integration presented above is seldom used in practice
because of large errors incurred in assuming a discontinuous |ift distribution.
In reality, the lift distribution adjusts ¥ the aileron deflection quickly but
smoothly. This being the case, the value of Cogp 18 normally found from the
spanwise load distribution data as presented in TR-635 (Ref. 49). These

data are reproduced below for (CgéA/T) as a function of the extent of the unit
antisymmetrical angle of attack.
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Figure 42. Values for (Cgga/T) as a function of the
extent of unit antisymmetrical angle of
attack. 103




A value of (Cgga/T) is obtained from Figure 42 by first using the distance
from the body centerline to the outboard edge of the aileron divided by the
wing semispan to get a value, from which is subtracted a value obtained by
using the distance from the body centerline to the inboard edge of the aileron
divided by the wing semispan. The value of (CZSA/T) from the graph is
multiplied by a value of T from the preceding graph to give Cggp per radian.

Typical values of Cggp range from 0.1 to 0.25 per radian.
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The stability derivative Chg,, the change in yawing moment coefficient
with variation in aileron deflection, results from the difference between drag
on the up and down ailerons. Since a positive deflection is with the aileron
on the left wing down, Cnéa is usually negative, even though it is heavily
dependent on the position and size of the ailerons and the angle of attack
of the airframe. A negative value for Cpng, is known as "adverse yaw coeffi-
cient due to ailerons'" because it Is the result of initial yawing of the air-
frame in a direction opposite that desired for a turn. Thus, the desired
value of CHGA is either zero or a very small positive value.

To compute a value for CH6A’ a formula, adapted partially from Datcom
(Ref. 10), is

Cng, = 2K CL Cpg -

Here, 8p is again positive for left aileron down and right aileron up, with
K being an empirical factor obtained from the following graph.

Y spanwise distance from centerline to the inboard
_ i edge of the control surface
by/2 semispan
-3
Aw=0.5
R=a

-.2

-.1

-25 -5 .75 1.0

n

Figure 43. Empirical factor K as a function of n
for taper ratio = 0.5.
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Figure 44. Empirical factor K as a function of n

for taper ratio = 1.0.

Typical values of Cngp range from -0.004 to -0.09 per radian.
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The stability derivative Cyg, is The change in side force resulting from

rudder deflection.

For a positive rudder deflection, or rudder toward the

teft wing, a positive side force results; hence, the value of Cygn Is positive.

For an airplane.without autopilot, the effect of Cygr is relatively unim-
portant to lateral stability and often is assumed equal to zero.

In Etkin (Ref. 50), the following formula for estimating CV5R is set forth:

where

Ay

C =a, T —
YGR v SW ’

| ift curve slope of the vertical tail
(calculated as shown in discussion of Cpg),
a function of rudder area fo vertical

tail area ratio as found from the graph

below.
.8
.6
- A
.2/////,

7y 2 3 a4 35 6 17
Sp/Sy
Figure 45. Values for T as a function

of rudder area to vertical
tail area ratio.

Typical values of CY@R range from .12 per radian to .24 per radian.
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The stability derivative Cqq, is the variation in rolling moment coefficient
with change in rudder deflection. Because the rudder is normally located above
the x-axis, a positive rudder deflection (rudder to the left) causes a positive
rolling moment, making CRGR positive. This value may possibly be negative for
an unusual airframe configuration or an abnormal angle of attack. For conven-
tional light aircraft, this derivative is of only minor importance and is
usually neglected.

The following formula adapted from Etkin (Ref. 50) may be used to determine
CQSR:
Sv Zy

Cleg = v TS B
w

where
zy = disfance from the x-~axis to aerodyanmic
center of the vertical tail

The value of T may be obtained from the graph below as a function of
rudder area to vertical tail area ratio.

A o b

N
N\

0 1 .2 3 4 5 .6 .7
Sg /Sy

Figure 4& Values for T as a function
of rudder area to vertical
tail area ratio.
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The stabillity derivative Chgp is the variation in yawing moment coefficient
with a change in rudder deflection. Also known as the "rudder power," this
derivative is negative, since a positive rudder deflection toward the left
wing creates a negative yawing moment.

Perkins and Hage (Ref. 11) give
S, £
= - -~V M

The value of T may be obtained from the following graph for a particular rudder
area to vertical tail area ratio.

-6

~ 4
Iy

1 2 3 4 S5 6 7
Sr/Sy

Figure 47. Values for T as a function of
rudder area to vertical tail
area ratio.

The value of Cngg is normally on the order of -.06 per radian but may
vary greatly, dependlng on the airframe configuration. Power has a great effectT
on Cn5 , as seen in the following graph from TR~781 (Ref. 51) for a single
engine plane with propeifler rotating To the right, flying at a speed of 111
miles per hour.
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-04l-——1 1
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Figure 48 . Effect of aircraft power on CnGR'
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POWER EFFECTS

Although the primary function of a propulsion system is to overcome airplane
drag, the location of the system with respect to aerodynamic surfaces may in-
fluence some aerodynamic parameters and, ultimately, aircraft stability. Thus,
as wing loadings increase, more pronounced power effects are to be expected.
The literature indicates that analytical determination of power effects for
light aircraft is, at best, an approximation. Many references suggest only the
origin of a particular effect and estimate only its order of magnitude. The
following will discuss the significant reports dealing with power, the charact-
eristic changes to be expected in longitudinal and lateral stability due ‘o
power application, and the analytical procedure given in Datcom (Ref. 10) for
estimating the effects of power on longitudinal stability.

Power effects for light aircraft can usually be classified as |) direct pro-
peller effects and 2) slipstream effects, with more accurate estimation possible
for propeller than for slipstream effects. Since the engine is directly in
front of the horizontal and vertical tails, the slipstream effects on single
engine aircraft may be more difficult to predict than those on twin or multi-
engine aircraft, especially in the lateral mode. The lack of documentation on
ways to predict analytically the effects of power on lateral stability bears
out this conclusion.

The need for higher-powered aircraft during World War 1! led to consider-
able interest in effects of power on aircraft stability. WR L-710 (Ref. 102)
indicates that power has a significant influence on both the longitudinal and
fateral stability and control characteristics. Using This report, one concludes
that power applied to single-engine, low-wing modeis decreases longitudinal
stability and effective dihedral. Directional stability and rudder and eleva-
tor effectiveness were usually increased by applications of power. AT the
same tTime, the report warns that power-on wind tunnel tests should be used to
predict actual flight stability and control, lest the researcher be misied by
Theoretical data.

NACA TR-690 (Ref. 103) is a report of the effects of propeller operation
on the flow about eight wind tunnel models. A tabulation of downwash angles,
the dynamic pressures at the tail, and the pitching-moment contribution of the
propeller and the wing is presented. TR-941 (Ref. 104) correlates some perti-
nent experimental data on power effects obtained during the War Years. It
gives semiempirical procedures to predict power-on longitudinal stability char-
acteristics with flaps undeflected, and agrees well| with experimental data.

In two Technical Notes, 1339 (Ref. 105) and 1379 (Ref. 106), Hagerman dis-
cusses the effects of power on the longitudinal and lateral stability of a
single-engine, high-wing airplane model. He found that, for longitudinal sta-
bility, power greatly increased the lift increments and the tail-off lifft
curve slope while, in general, it decreased the stability of the mode! for all
three flap configurations fested. For lateral stability, application of power
had no effect on the effective dihedral, with the flap neutral; however, with
both single and double slotted flaps deflected, power increased the effective
dihedral. The directional stability of the entire model was increased except
with flaps neutral at low 1ift coefficients. Rudder effectiveness was decreased
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with flaps neutral and double slotted flaps deflected and increased with single
slotted flaps deflected. Trim changes caused by power were small, indicating
good control. TN 1327 (Ref. 107) on lateral stability, written about the same
time as Hagerman's work, reveals that power decreased the dihedral effect re-
gardiess of the flap condition, increased the directional stability, and in-
creased overall lateral stability as lift coefficient was increased.

The problem of power effects also justified the investigation undertaken in
TN 1474 (Ref. 108), which sought to off-set power effects by using an unsymmet-
rical tail on the single-engine airplane. Although the tests and analyses
showed that extreme asymmetry in the horizontal tail indicated a reduction in
power effects on the longitudinal stability, the "practical"™ arrangement tested
did not show marked improvement. Three years after the asymmetric investiga-
tion, a dynamic free-flight study of dynamic longitudinal stability as influ-
enced by static stability measured in wind-tunnel force tests under conditions
of constant thrust and constant power was undertaken. (Ref. 109) The results
agreed with previous studies that the longitudinal '"steadiness" of airplanes is
affected to a much greater extent by changes in constant-thrust static margin
than by changes in constant-power static margin.

TN D-3726 (Ref. |10), a recent report directly related to light aircraft,
discusses the effects of power on the landing configuration stick-fixed and
stick-free static longitudinal stability for the aircraft (including both twin
and single engine aircraft) with the most pronounced power effects. When the
power was cycled from approach to maximum at an airspeed of 80 knots the pilot
had to push with a force of approximately eight pounds to counter the resulting
nose-up pitch. This characteristic also presented a problem when the power was
being reduced in the landing phase. For light aircraft, power effects caused
by propeller slipstream can become quite large. At a speed of |10 knots, ap-
proximately 10 degrees of rudder and 90 pounds of force was required to maintain
heading when changing power from maximum to idle. This was considered excessive
by the pilot.

Another recent paper (Ref. Ill) on light aircraft gives methods for analyz-
ing power-on static longitudinal stability. The methods are similar to those
given in Datcom (Ref. 10); however, the paper also describes how power effects
can be analyzed using airplane stick force, elevator deflection, and neutral
points. The method utilizes a point-fo-point calculation fTechnique for each
speed or load factor variation from trim.

[n 1969 and 1970, NASA investigated longitudinal and lateral stability char-
acteristics of both a light single engine and a light twin engine aircraft in a
full scale tunnel (Refs. 112 and |13). These investigations were carried out
for several conditions of power, as indicated by the extensive data in each re-
port. These two reports may be used either to obtain a rough estimate or to
help verify the exactness of analytical procedures for estimating power effects
on aircraft similar to those investigated.

Although the literature mentioned above may give the general trends for power
effects, analytical techniques are often hard to find, cumbersome to use, and
inaccurate. For the present, Datcom (Ref. 10) probably gives the best analyti-
cal procedures for predicting power effects. They are extensions from those of
Perkins and Hage (Ref. 1), among others (Refs. |14 and I15), with improvements
added where possible. Datcom's methods of estimating power effects on lift and
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pitching moment variation with angle of attack are summarized below. Curves of
both ACL and ACy versus o can be plotted for several flight conditions using
these procedures; thus, CLy and Cmg due to power can be evaluated. Scrutiny of
the present discussion points out that the estimation of power effects deals
only with static longitudinal stability. |t would seem that an approximation
of power effects for the dynamic derivatives could be achieved by estimating
the change in ny with power, computed analytically in a similar manner to that
given below, and using this corrected value. Some of the methods given can al-~
so be used to estimate lateral stability derivative changes with power. For
example, (CNo)p is analagous to (Cy )p or (-Cyg), for cruising flight and could
be used to estimate (C ¢) or (Cyg? When approached from the engineering
viewpoint, similar meThods could also be used in determining siipstream effects
on the vertical tail.

Again the reader should remember that, at best, analytical prediction of
power effects is crude.

Lift Increment Due to Propeller Thrust

(aC )T = nCT sin o

L T
where
n = number of engines
ar = thrust axis angle of attack fto free stream in degrees

T

Lift Increment Due to Propeller Normal Force

AN S
= _R = 0 P i
(ACL)N TS COS 0 f(Cy )p (ap)( S J cos ar (per radian)
p W o W
where ap = angle between [ocal airstream and thrust in degrees
Sp = propeller disc area
f = propeller inflow factor
(CN )p = propeller normal-force derivative at TC‘ = 0 per radian
e
de
o = o - —— (o ~a_)
p T d0 W O

ghere o, = wing angle of attack for zero lift in degrees
€
—§§-= wing upwash derivative given in Figure 49.

The factor f accounts for the increase in velocity at the propellier plane due
to the induced flow of the propeller and is given in Figure 50 as a function of

Sw cT

&R “
p

whers Rp = propeller radius in feet.
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N
(Cy )p = [(CN )p] [1 +0-8(—80‘_7 '1)] (per radian)
a o KN=80.7

b b b (per
where K = 262(z%) oo + 262(R) (p + 135(gF) g5 blade)
PP P P
with bp = blade width in feet
[ccy ] = propeller normal-force derivative at Cy
P Ky=80-7 and given in Figure 51 as a function of

B, the nominal blade angle at 0.75 rad-
ians; this blade angle should be ob-
tained from a performance engineer or
from a power plant engineer.
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Figure 49. Upwash gradient at plane of symmetry for unswept wings.
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Figure 50. Propeller inflow factor.
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Figure 51. Propeller normal force parameter.

Lift Increment Due fto a Change in Slipsiream Dynamic Pressure on the Wing

(ACL)Ans = KlAn (c,)
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where Ky = correction paramefer for additional wing
lift due to power and given in Figure 52,
where AR; = effective aspect ratioc of wing
immersed in the slipstream,

A; = 2Rp/cjy,
cij = average chord of wing immersed in
slipstream.
Aqg . . . X
bng = 5 - ratio of change in dynamic pressure in
propel ler slipstream to freestream
dynamic pressure and given by
_ SwCT .
Ang = Eﬁ;}'(per engine).
S; = wing area immersed in the slipstream in square
feet.
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Lift Due fo the Change in Angle of Attack lnduced by the Propeller Flow Field

S.
- 1
(ACL)a = (1 +Ans) CL Ao 3
W o w
-€
where Aa = -£%;—
€
-4
o0
o€
ep - o 0Lp
p
o€
o = a - Yo -a)

p T 9da w o0

The propeller downwash derivative is given by

de
P -
5a - C1 7 G (G )y
p o
where C; and C2 are presented in the figure below and
(CN )p Is giveh in one of the previous sections.
(¢
19
Cy
.8
/‘/’_
L
A
€ -
¢
S a4
S //
'\\J; cz
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Sw Cr/8 R?

Figure 53.

Factors for determining downwash due to propellers.
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Lift Increment Due to the Horizontal Tail

c_
%y

(ACL)t = —(ACm)t

where (ACm)t = tota! change in pitching moment of the
horizonta{ tail due fo power and can be
calculated using

(ACm)t = (ACm ) o+ (ACm )

¢ 9 t
given in the next section--pitching moment
variations with power.

€

Total Lift increment Due to Power

(ACL)power = (ACL)T + (ACL)Np + (ACL)Ans + (ACL)aw

+ (ACL)t

Pitching Moment Increment Due to the Offset of the Thrust Axis

from Origin of Axis

T
(aC )y = Cp —

Pitching Moment Due to the Propeller Normai Force

X
(ac_ ). = (acy. 21
m°N L°N ¢ cos ar
where x_ = distance from the intersection of the

propeller plane with the thrust axis tfo
the wing quarter chord.
(ACL)N is evaluated in a previous section.

P
Pitching Moment Due to the Change in the Lift of the Wing

Caused by Power Effect

X
= _ >
(ACm)L = [(ACL)An + (ACL)a ] z
. s W
where Xy = distance parallel to x-axis from wing quarter-

chord to aerodynamic center of wing area im-

mersed in the slipstream, in feet

(AC,) and (AC, ) are evaluated in a previous section.
L Ans L o
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Pitching Moment Due to Change in Dynamic Pressure Acting on the

Horizontal Tail

Agq, S, 2

(ac_ ) =-c, —LLL

t 2q t 9 €
where —EE is presented in the figure below.
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Figure 54. Effect of propeller power on dynamic pressure ratio
' at the horizontal tail.
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Pitching Moment Due to the Change in Angle of Attack of the Horizontal Tail

S, 2,9
(aC_ ) =C  he £ -E(=E)
m,'e L S ¢ ‘q “/ power
t o, w
where Ae is given in Figure 55 for single engine
airplanes and Figure 56 for multi-engine
airplanes. eprop off can be obtained from
a formula in the C_ section.
q q Aq
5 = (5 +
q ‘power q ‘prop off q
Aqt
where —a—Js evaluated in Figure 54 above.
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CONTROL FORCES AND DEFLECTIONS

Pitch Control

As indicated previously, the state of knowledge regarding desirable air-
craft handling qualities up to 1948 js codified in NACA TR-927 (Ref. 16) and
in the text by Perkins and Hage (Ref. 11). These works have served those of the
present generation of aeronautical engineers without access to large research
and development budgets virtually as holy writ, and the handling qualities of
most aircraft of less than 10,000 pounds gross weight now flying reflect this
technology. I+ is therefore desirable to examine the parameters cited in these
works, their values, and the factors which produce them in some detalil as a
foundation for recent advances in understanding and new results.

For an aircraft which employs a trim tab to set longitudinal flight
velocity, it can be shown that at any given trimmed speed the incremental stick
force variation with speed is given by Perkins and Hage (Ref. 11) as

C
dFg W hG dCry 1
—= = -2 GS ry -1,
du eCelly 5 Cmg \dCL/Free \ur
where
G = ratio elevator displacement to the product
of stick length and stick angular displacement,
C
and <£"1>F =<£,E) , Cho Thos s i%<“gé>
ac, JFree = \ac JFix T T C S, 't db o/
L hg Law W e
Since
S d
- Y 5 . 9%
Crng Cloy o 5,0 d5¢ »
dac CLOL !
Then

dFs _ —7%%Ce n, W Chs |Cmy, _ Chy Cmg Q - QE)
du UTrim SW Cm(S CLa Cth CLuw do

A pull force is negative. |t is seen that for a given aircraft, the stick force
gradient at trim depends upon the frim speed, the weight, and the c.g. location.
Short of major geometric modifications, the force gradients for a given speed,
weight, and c.g. location can be changed by modifying G and the hinge moment
parameters, Chy and Chg. The effect of elevator balance point, elevator nose
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shape, elevator trailing~edge shape, mass balancing and sealing on Chy and Chg
are treated extensively in TR-868 (Ref, 52), Figures 57, 58, 59, 60, and 6]
illustrating these effects are faken from this work, A gulde for using these
charts follows Figure 61,
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Figure 57. Charts for determining numerical values
of overhang factor F1 and of nose-shape
factor F» from geometric constants of
balanced ailerons.
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Nose Section showing nose shape Nose shape factor, F;

type =0
—’ch'ﬂ'L ca |
< y 1 E_b_]_ 2
0] .t - = 1- 1_( Ca )
9 ¢
142
Ca

Mc=Mol 4 (4.
Mg-Mo

\‘t“‘ch

Figure 58a. Various nose shapes considered in correlation of plain,overhang, and

Frise balances and corresponding expressions for nose-shape factor.
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AIRPLANE CONSTANTS

Wing span, b, ft. . . . « . « + . « v . o . . .43
Wing area, S, sg ft . . . . . . . . . . . . . 308
Aspect ratio, AR. . . . . . . « .+ . .« .. . 6.0
Taper ratio, A e e e e e e e e e e e e e .5
Root airfoil section. . . . . . . . . . NACA 23015
Tip airfoil section . . . . . . . . . . NACA 23009
Airplane weight, Ibs. . . . . . . . . . . . 12,000
Stick length, ft. . . + + « ¢ v v ¢ v ¢ o o . 2.33

Figure 60, Effects of aerodynamic balances on aileron hinge-moment para-

meters estimated from correlations. gé.= 0.25.
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on the hinge-moment parameters of
control surfaces. M=0.2 or less.
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The generai expressions for changes in the hinge moment characteristics
which result from geometric changes are

Ac, = AR [o.owF1 +5.05 x 10~% Acb] ,
o AR+2
and
ac, = AR [O.1OF1F2' + 5.7 x 1074 A¢]
) AR+2

The trailing edge angle data are for balances with a gap of .005C.

One first selects a nose shape from Figure 58 and secures therefrom a
value of F,'. This involves, in addition, a selection of ¢, /c,. The symbols
Mo, MB, Mg, Mps> Mg, and Mg refer to moments about the hinge axis of the pro-
file areas of exposed overhang balances of types corresponding to the sub-
scripts 0, B, C, and so forth. The balance profile area is defined as the
total profile area of the airfoil ahead of the hinge axis. Fy=F2' for nose
shapes O, A, B, D, and G. F2 can also be found from Figure 57. The same
figure is used to determine Fj. One then calculates F{F,' and uses Figure 61b
or the equations above o check whether the initial selection of nose shape
and nose overhang Will give the desired modification in hinge moment charact-
eristics. Additional modifications in C, and Cp. can Then be obtained from
trailing edge angle variations as indicatéd in Figures 59 and 6la or the

equations above.

For sealed balances, the equations are
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AR Ca)2 -y
ACh, = AR¥z |0.-14\5) Fy +5x 10 Aq;J
and | ) . i
AChg = AR+ 0.09YZ Fi + 4 x 107" A

The increments represented by these equations are to be added to the
hinge moment coefficients produced by control surfaces with no area forward
of the hinge line. The results of calculations for the basic hinge moment
coefficients of thin, simple shapes shown in TR~-868 (Ref. 52) can be repre-
sented by

Ca Ca
Cha = ~,0003 e - < 0.4,
and
cq 122 Cy
Chd = -,023 = - < 0.4 .
It should be noted, however, that these values will be altered to some ex-

tent by the condition of the flow over the basic wing (condition of boundary
layer, presence of tip vortices, efc.) and by the particular shape of the
control surface. For this reason, precise values are usually obfained ex-
perimentalily. Further details may be found in Reference 52.

One final consideration should be mentioned here: To reduce drag,
inertially-induced control surface deflection, the possibility of flutter,
and effects of control! surface droop, and the control surface actuation
force, the control surface is also mass balanced about the hinge line.
will offen require that lead weights be placed in The nose of the aero-
dynamic balance or attached by long arms to the hinge axis.

This

Report 927 (Ref. 16) illustrates suitable values for Chyg and Ch§ for a
Typical example. This is reproduced as Figure 62. |In general, one desires
to keep the values of Chg and Chg small. This will also keep the stick
forces to reasonable values for high speeds or heavy weights.

Some of the means for altering the effective G mechanically (springs and
bob weights) are discussed by Perkins and Hage (Ref. 11). Fully powered con-
trol systems, of course, can use other means if necessary to produce the
desired feel. (See, for example, TN D-632 (Ref. 53).)

Formerly, considerable effort was expended toward specifying acceptable

values for dFs/dU, but recently specification writers (both in FAR part 23
(Ref. 54) and in MIL-F-8785B (Ref. 4) ) have asked only that dFg/dU be stable
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at all flight conditions, e.g., that increasing pull forces and aft motion
of the elevator control be required to mainftain lower than +rim airspeed.
There is no requirement that dF./dU be linear.*

In addition to calling for stable force-speed gradients, both FAR part 23
and MIL-F-8785B specify tThe maximum out-of-trim forces an aircraft should
require in a variety of flight conditions. The table below summarizes these
maximum forces and conditions.

.005 Stahle region
Neutral stick-free stability
for static margin of 0---,
(1]
/]
h
L Positive values of c..‘l not used
Z Neutral stick-free bec?'lllse- of uns.table' tshort- period
-.005 stability for static oscillations with stick free
margin of .05¢
Unstable region
-010 1 d d
-015 -010 -005 0 .005
C
hé‘
Figure 62. Boundary between stable and unstable values
of Cp, and Ch for the example given in
TR—929. GE Unstable side of boundaries

indicated by cross-hatching.

* Indeed, dF./dU is directly proportional to U away from trim. Other
causes of non-|inear force variations include the fact that all the der-
ivatives in the equation are evaluated at specific points only. At high
values of Cy, for example, C is less than for C_ near 0. Thus, one
should take care that the derlvative values used for calculations are
those valid for the range of angles being considered.
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(Ref.

132

CONDITION MAXIMUM FORCE REFERENCE
1.5 Ust+a|| with power
off and gear and flaps 10 Ibs FAR 23.145
down at most forward c.g.
Any cruise speed between 1.3Ug
and Uyax; Approach speeds 40 Ibs FAR 23.175
between 1.1Ug and 1.8Ug
Maximum force for pro-
longed application; 10 Ibs FAR 23.143
Temporary application
Stick 60 Ibs
Wheel 75 1bs
Take-off 20 1bs pull to MIL-F-8785B
10 Ibs push 3.2.3.3.2
Landing Must be a pull MIL-F-87858B
force of not more 3.2.3.4.1
than 35 |bs
Dives with aircraft < 50 Ibs push} )
trimmed for level flight < 10 Ibs pull stick
< 75 |bs push
< 15 Ibs pul I} wheel MIL-F-8785B
3.2.3.5
with trim at dive entfry < 10 tbs stick
< 20 Ibs wheel

Table 11.

Specification requirements for maximum out-of-frim forces.

The general expression for stick force is given in Perkins and Hage

11) as




Fg = -GSgce %’fnt [Cho + Chcx oy = € = Ty *+ 1¢) + Chg Sy + Ch5+ S+ ]

+[Cha 3%’;[(1 %) C_m_?ﬁ;f;]
Cly, PY do Crg PUZ Ty,
where
0o = aircraft angle of attack for zero lifft,
iy = wing incidence angle,
iz = tail plane incidence angle,
Cho = residual hinge moment coefficient
(hinge moment not caused by deflection
or angle of attack),
8go = elevator angle at zero aircraft liff,
84 = trim tab deflection.

Note +that for trimmed flight, 6+ 1is such that Fg = 0. For aircraft with
irreversiblie fongitudinal control systems, Fg is the force which the control
system must apply fo the elevator or stabilator, but the force which the pilot
feels is determined by control system design.

The only mention found in the literature for desirable control deflection
gradients is the requirement in MIL-F-8785B 8§3.2.2.2.2 (Ref. 4) that the pilot
apply not less than 5 Ibs force for each inch of stick travel.

Anything which changes the flow field in the neighborhood of the horizontal
control surface can have an effect on its actuating forces. Such changes can
be the result of applications of power (which result in increases in ng and
confributions fo the downwash field from the propeller siipstream) or alterations
in the }ift configuration, as with deflection of flaps (which also result in
altered downwash fields). The change in wing pitching moment accompanying the
deflection of flaps varies the trimming moment which the tail is required to
generate and thus changes the stick force or the trim tab setting required.
Additional moments associated with the application of power develop when the
thrust does not act through the c.g. and because propellers generate in-plane
forces in upwash fields. Some of these effects tend to reduce stick forces and
gradients; others tend to increase them; none of them are easy to estimate
accurately from theoretical considerations alone. Wind tunnel or flight ftesting
is necessary for accurate evaluation. For most aircraft, the application of
power results in a more positive value of Cp, and a reduction in control forces.
The discussion in Perkins and Hage (Ref. 11) enables one to arrive at some
very approximate quantitative values for these effects. The problem of undesirable
trim changes with application of power or extension of gear and/or flaps is
apparently a fairly common one since several of the light aircraft tested for
TN D-3726 (Ref. 55) evidenced substantial shifts in stick force with the appli-
cation of power or the extension of flaps or gear.

In addition to the forces required to change speed, the forces needed 1o

change flight direction contribute significantly to the pilot's impression of
the vehicle's handling qualities. In the longitudinal mode, these are usually
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stated as the stick force per "g". The forces required to change

direction are higher than those required to initiate a change in

gpeed alone at the same dynamic pressure because an

additional frim moment is required to pitch the aircraft to an angle of attack
sufficient to generate the additional |ift needed to curve fthe flight path and
because rotation (up-pitching) induces a positive angle of attack component in
the flow about the tail plane, which one must counter with a compensatory
elevator defiection.

To find the elevator stick force for an arbitrary maneuver, it is necessary
to solve the general equations for the normal acceleration produced by that
elevator motion which results from the specified application of stick force.

For simplicity and standardization in analysis and in flight tests, however,
maneuvers designed to evaluate stick force per g are limited to steady pull-ups
in the xz plane of inertial space and to steady turns in the xy plane of
inertial space. The genera! expressions for stick per g in these circumstances

are
<dFS) _ GNgSece(W/SIChg |Cmg . Cho, 2+ St o St (1 _ d€>
dn JPutl-ups Cs Cly Chg C Sy 't dog da
Chg*
- e - A8
57.3 GntSeceglt 5 Chy, dag R
dbe
and dFs B GntSece(W/S)ChG Cma Chd 2t S¢ doy  de
an Jturns ~ o Yoo o s "t gss o
n Cmg Ly “hg & Sw e
Che*
- L ! _ 6
dég
Note that the stick force gradients will be linear in pull-ups so long as
G, Cmg> Cla, Chy» Che, (dat/dSg), (de/da), Clys, and ng refain the same values

as for n=1. Note also that as turns tighten, the stick force per g approaches
the same value as for pull-ups.

On the guestion of linearity, MIL-F-8785B (Ref. 4) specifies that the
local value of dFg/dn shall not differ by more than 50% from its average value,
The force limits in maneuvers are stated differently for stick and wheel con-
frols, the rationale being that stick controllers are easier to manipulate pre-
cisely at low forces and wheel controllers permit larger forces to be applied.
Not unexpectedly, the force |imits are stated in terms of the limit load factor
which the structure can sustain. One would not wish fo be able to exceed this
load factor with a very light force; nor, on the other hand, would one wish The
stick forces to be so great that the maneuver capabilities of the craft could

* Chg is often increased by 10% to account roughly for the fuselage damping,
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not be achieved. For the limit load factor of 3.8 typical of most light air-
craft, the specification stipulates that for stick controllers the maximum
stick force per g shall be no more than 28 |bs per g nor less than 20 Ibs per
g. The minimum gradient is 7.5 Ibs per g.

With wheel conroliers, the maximum values are at least 42.8 Ibs per g
but not more than 120 Ibs per g. The minimum value is 16 |bs per g.

"The term gradient does not include that portion of the force versus n
curve within the preloaded breakout force or friction band." These, according
to paragraph 3.5.2.1 (Ref. 4) should be between 1/2 and 3 Ibs for a stick and
4 |bs for a wheel,

FAR part 23 (Ref, 54) places no numerical [imits on fthe elevator stick
force in maneuvering flight other than fo say (23.143) that the force on the
pitch control should never exceed 60 Ibs (stick) or 75 Ibs (wheel) during tem-
porary applications or 10 Ibs during prolonged applications., The popular
flying journals generally do not report such data perhaps because its acqui-
sition requires the installation of considerable instrumentation or because
the omission of quantitative standards in the FAR's suggests to some either a
lack of significance or a lack of popufar appreciation for the meaning of
quantitative values in describing handling. Since there are few reports
dealing with light aircraft available elsewhere, it is difficult fo determine
the force gradients now common in light aircraft.

Two sources, however, are helpful. TND-3726 (Ref, 55) reports that, for
some of the light aircraft investigated, stick force gradients varied between
8 and |7 Ibs per g for speeds of less than 100 knots. When compared with the
requirements of MIL-F-8785B (Ref. 4), these aircraft have gradients lower than
desired. On the other hand, tests on a light aircraft adapted for military
use (Ref. 56) showed compliance with the specification at all flight conditions
and aircraft loadings. Based on these |imited samplings, one would expect fo
find a wide variation in the handling during maneuvers exhibited by contempor-
ary light aircraft.

One additional area given prominance by MIL-F-8785B but not referred to
elsewhere in quantitative terms is the phase relation between the application
of control force and the motion of the cockpit control on the aerodynamic con-
trol surface. Paragraph 3.5.3.1 requires that control deflection should not
lead the application of control force. Paragraph 3.5.3 specifies that the
contro! surface deflection shall not lag the cockpit control forces by more
than 30° in phase angle for application frequencies equal or less than wnsp'
In control systems where the aerodynamic surfaces are actuated by rigid
| inkages from the wheel or stick these requirements of course are always met.
If, however, the system contains elastic elements, [inkage force boosters, or
remotely controlled actuators this may not be the case. The characteristics
of such systems will require investigation and possible alteration to insure
compliance with The specification. Reference 56 presents results taken with
typical force and angular position transducers which could be used along with
oscillographic or tape recorders to obtain data suitable for analysis of the
control system phase responses.
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Roll Control

If one reviews the literature dealing with the handling qualities of
light aircraft in the roll mode chronologically, he becomes aware of a subtle
shift of emphasis from concern primarily with achievement of a given rolling
rate at low speeds and |imitation of aileron forces at high speeds to concern
with total pilot work load (including rudder and elevator coordination re-
quired) during rolls and to the angle attained in a specified period of time.
This is not surprising when one recalls that during the era of World War 1l
good rolling performance in fighter aircraft (weighing generally less than
10,000 Ibs, at least at the beginning of the war) was essential to survival
in dog fights. As knowledge of how fo achieve this performance aerodynamic-
ally grew and the control forces at high speed were reduced by power boost
systems, attention could be devoted to factors affecting safety and precision
rather than simple survival. Hence, the 1969 revision of MIL-F-8785B (Ref.4)
devotes considerable attention to [imiting the forces the pilot must apply to
rudder and elevator during aileron application. It also changed the require-
ment for the attainment of a given pb/2U to the attainment of a given bank
angle in a fixed time on the premise that such a requirement was more mean-
ingful in establishing collision avoidance capabilities and was equally
suited to establishing the desirability of other areas of rolling performance.

The shift in areas of concern with time also had its analog in the ana-
Iytical techniques employed and the parameter values identified. Whereas one
would begin a discussion of roll handling with consideration of those control
forces, control deflections, and their gradients which affect the pilot's
opinion of an aircraft's roll handling qualities, it will be recognized that
such things as the phase relationships between control application and aircraft
response, the presence of spurious responses which require control input fo
counter, and the precision with which desired maneuvers can be executed also
contribute significantly to his overal! impression of handling characteristics,
These factors plus the inevitable coupling of lateral and directional modes
and the fact that aerodynamically the aircraft has no inherent bank orienta-
Tion and Thus no static roll stability in the conventional sense, make it
necessary to employ a more general approach fo roll handling analysis than
the simpler view suitable for the treatment of pitch handling. The discussion
which follows begins, therefore, with the simple, one-dimensional view and
moves on to detail methods which the specification writers have used in an
effort to quantify other phases of acceptable roll handling.

The general, linear ftreatment of steady, one-dimensional roll has been
available since the mid~[940's. (See References |1 and 16, for example.,) With
the assumption that all derivatives remain constant irrespective of aileron
deflection, speed, altitude, and rolling rate, and that the time required o
attain the maximum rolling rate for a given aileron deflection can be considered
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zero¥*, one can write

¢ = -~ 9.<Ef§> § ¢t
b CR a ?
p

for the bank angle as a function of aileron deflection and

* One-dimensional rolling motion is described by the equation
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whose solution for a step aileron input is
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In this equation, q = 1/2 pU2. Since the denominator of the second fterm *x

(equal to (1/15) ) generally has a value of -10 or more (negative), it is
obvious that for times in excess of about !|.0 sec the second term contributes
very little to the bank angle attained. MIL-F-8785B, §3.3.1.2 requires that
the maximum value of TR for fight aircraft is [.0. 83.3.1.4 further states
that the roliing mode and the spiral mode shall not couple, ie, the time con-
stants have the same value, to produce an oscillatory mode. For a simulator
study of this case, the reader is referred to TND-5466 (Ref. 57).

For the compiete three-dimensional ftreatment of rotling response to
alleron deflection, the appendices fTo the present study should be examined.

** See Appendix D for a discussion of the stability derivatives most
important in determing the value of the rolling mode time constant, TR-
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for the bank angle as a function of control force. 6_ is the total (up plus
down, assumed to be equal and equalily effective) ailefon deflection. y' is
the spanwise location of the aileron centroid., It is seen that at low speed
the rolling performance increases with increasing speed until the force limits
are reached; at this point the bank angle possible per unit time decreases
with increasing speed. The ratio (CQG/CRP) is a function of taper ratio,
alleron-to-wing chord ratio, and per cent of span denoted to ailerons. In
addition to making this ratio as large as practicable (maximum possible value
is about 1,5), one desires to adjust

c, C
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| e
o'|~<_

L
c
hG lp
To be approximately 0.5 so as to increase the roll capability at high speeds.
Careful attention to aileron geomeiry is therefore necessary to obtain the
proper ratio of Ch, to Chg. TR-868 (Ref. 52) is an excellent source of ex-
perimental data on geometric effects and design methods.

It is apparent from the foregoing that if one minimizes friction and
elasticity in the aileron |linkage, the factors contributing to wheel or stick
force and to rolling performance are well known. Even non-linearities in the
derivatives Chgs, Cp,, etc., while requiring that tedious computations be made
to obtain ¢(+), are well documented for a large number of configurations. Thus
it is a fairly straightforward matter to translate confrol force, control de-
flection, and rolling performance |imitations into hardware specifications.

It remains then to state the appropriate values for these qualities.

The maximum force given in FAR part 23 (Ref. 54) and MIL-F-8785B (Ref. 4)
seem, for the most, To have been selected by experience from many years of
pilot comments; nevertheless, comparison of these results with available an-
thropological data (See discussion of Human Factors in this work) for the com-
fortable application of lateral forces shows good agreement. The table below
gives a summary of the specification requirements.
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REQU |REMENT

REFERENCE

Temporary: Stick 60#
Wheel 7o># (Max)

Prolonged 1 0#

FAR 23,143

Stick 20#
Whee | aop (M)

The minimum force for maximum
rolling performance shall not
be less than the breakout force
plus |/4 of the above values.

Control centering and breakout
forces shall not be more than
2# (stick) or 3# (wheel) nor
less than /2 #.

§3.5,2.1

Rolling performance: aircraft
must reach a 60° bank angle in
.7 sec in cruise and a 30°
bank in |.3 sec for approach

§3.3.4.14

Not more than 60° of wheel

| S

Not more than 5# (stick) or 10#
{(whee!l) should be required to
achieve a 45° bank with rudder
free and the ailerons frimmed
for wings in level flight.

+

rotation, in either direction

80° for a
completely

§3.3.2.6

§3.3.,4,4

mechanical system

There shall be no objectionable
non-linearities in variation of
rolling response to wheel motio

n.

§3.3.4.3

Control surface response shall
not lag cockpit control force
input by more than 30° phase
angle for frequencies less
than 1/t or wpy, whichever is
larger,

§3.5.3

Cockpit control deflection
shall not lead cockpit control
force.

§3,5.3.1

Table 12.

Specification requirements for comfortable application of

forces.

lateral
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The requirements quoted in the preceding table are those restricted to
Class | (small light airplanes such as light utility, primary trainer, and
I ight observation up to about 12,000 Ibs gross weight); category B which in-
cludes climb, cruise, and descent and category C which includes take-off,
approach, and landing; and Level |, ie, having flying qualities clearly
adequate for the Mission Flight Phase, This approach was selected for the
present work because it was desired to show the present state of understanding
of what is required to obtain satisfactory handling qualities,

The requirement on the time constant of the rolling mode was given pre-
viously as not less fthan 1.0 sec, Examination of the equation of motion

cited previously will also show tThat the aircraft will respond well to sinu-
soidal aileron inputs up to frequencies of
2
C2 b qu
—3%—T———— rad/sec,
XX
where 2
q= 1/2 pU=.

This is generally above the range at which the pilot can track. Thus, if the
phase lag in the control system is less than 30° up to this frequency, the
pilof will find the aircraft able to generate roll rates corresponding to

wheel position virtually as rapidly as he can turn the wheel or move the stick.

IT is noteworthy that in preparing this specification, its writers have
provided quantitative limits on

(1) The rolling performance of which the aircraft must be
capable,

(2) The maximum and minimum forces needed to produce maximum
rolling velocity,

(3) Permissible breakout and centering forces,
(4) The maximum confrol deflection.

These, coupled with the frequency response requirements mentioned earlier and
+he ban on objecticnable non-linearities, present a complete and quantitative
description of the factors contributing to the pilot's satisfaction with roll
mode hand!ing.

The usual methods of producing a rolling motion is the differential de-
flection of outboard portions of trailing edge of the wing, or ailerons, |[f
one wishes fto roll to the right, he deflects the right aileron up to reduce
lift on that wing and deflects the left aileron down to increase lift on that
wing. Usually, such operation is a portion of a coordinated turn to the right.
The drag on the right wing is decreased and the drag on the left wing increased
by this aileron deflection. The resulting yawing moment (called adverse yaw),
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if unbalanced by a rudder deflection, reduces the effective rolling velocity
by moving the right wing at a higher forward velocity than the left wing.
The |ift on the right wing is therefore greater (and iess on the left) Than
would be the case if the adverse yaw were not present.

Adverse yaw is also undesirable because if unopposed it excites the
fightly damped Dutch Roll oscillation. The pilot thus finds himself pro-
ducing often disconcerting yawing motions unintentionally, The specification
requirements |imiting its extent include 83.3,2.,5 (Ref. 4) which provides that
no more than 50 Ibs of rudder force be required to make a coordinated (B=0)
turn at cruise speeds or 100 Ibs in The approach configuration for high per-
formance fighter aircraft. There is also 83,3.2,4, which provides that ad-
verse sideslip shall not exceed 10° and that proverse sideslip shall not ex-
ceed 3° during flight phase categories B and C (cruise, climb, descent, and
take-off and landing). TND-3726 (Ref. 55) suggests that pilots find a side-
slip angle of 10° in response to a rudder-locked aileron deflection the max-
imum acceptable. Some of the aircraft tested for this report exhibited side-
slip angles in excess of 13°., Reference 56 reports that a converted light
aircraft carrying military stores under the wing reached sideslip angles in
excess of 10° and required 125 |bs of rudder force to perform a coordinated
turn at low speed. The military stores were responsible for a 5° increase in
sideslip angle.

In the absence of a rudder force fto counter the adverse yawing moment,
the aircraft will develop sufficient sideslip to permit a balancing yawing
moment due to sideslip fo be produced. Since altl light aircraft employ some
dihedral to aid in maintaining the wings' level during normal flight* and
since this stabilizing rolling moment due to sidesiip acts to reduce the roll
rate achieved by a given aileron deflection, it is important for good rolling
response that adverse yaw be held to a minimum, 83.3.6.3.2 of MIL-F-8785B
(Ref. 4) states that fThe positive dihedral effect shall not be so great that
more than 75% of the roll control power available to the pilot, and no more
than 10 Ibs of aileron stick force or 20 Ibs of wheel force are required for
sideslip angles which might be experienced in service deployment,

The comments of AFFDL-TR-69-72 (Ref, 4) relative to sidesiip requirements
developed for the specification seem particularly pertinent: " the primary
source of data from which the sideslip requirement evoived (See AFFDL-TR-67-98)"
are those tests for which the ratio of bank angle fo sideslip angle during
Dutch Rol! equaled about 1.5. "The pilot comments associated with these con-
figurations indicated that pilot's difficulties were almost exclusively as-
sociated with sideslip, rather than with bank angle ftracking as was the case
for |¢/B|d=6 configurations. Analysis of the data revealed that the amount
of sideslip a pilot will accept or tolerate is a strong function of the phase

* FAR part 23 (Ref., 54) states that "the static lateral stability, as
shown by the tendency fo raise the low wing in a slip, must be positive for
any landing gear and flap position,"
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angle of the Dutch Roll component of sideslip, When the phase angle is such
that B is primarily adverse, the pilot can tolerate quite a bit of sideslip.
On the other hand, when the phasing is primarily proverse, the pilot can only
tolerate a small amount of sidesliip because of difficulty of coordination,

"There is more to coordination, however, than whether the sideslip is
adverse or proverse; the source and phasing of the disturbing yawing moment
also significantly affect the coordination probiem. |[f the yawing moment is
caused by aileron and is in the adverse sense, then in order to coordinate
the pilot must phase either right rudder with right aileron or left rudder
with left aileron. Since pilofs find this technique natural, they can gener-
ally coordinate well even if the yawing moment is large. If on the other hand,
the yawing moment is in the proverse sense or is caused by roll rate, coordin-
ation is far more difficult. For proverse yaw-due-to-aileron the pilot must
cross control; and for either adverse or proverse yaw-due-to-roll-rate, re-
quired rudder inputs must be proportional to roll rate. Pilots find these
Techniques unnatural and difficult to perform. Since yawing moments may also
be introduced by yaw rate, it can be seen that, depending on the magnitude
and sense of the various yawing moments, coordination may either be easy or
extremely difficult. |If coordination is sufficiently difficult tThat pilots
cannot be expected to coordinate routinely, the flying quality requirements
must restrict rudder-pedals free unwanted motions to a size acceptable to
pilots."

"Analysis further revealed fthat it was not so much the absolute magnitude
of the sideslip that bothered the pilot, but rather the maximum change occuring
in sideslip. The latter was a better measure of The amount of coordination
required. Thus the data...were ploftted...as the maximum change in sideslip
occuring during a rudder-pedals-fixed rolling maneuver, AB; 5%, versus the phase
angle of the Dutch Roll component of sideslip Yg. The phase angle, Yg, is a
measure of the sense of the initial sideslip response, whether adverse or pro-
verse, while ABpgyx is a measure of the amplitude of the sideslip generated.
Both the sense and amplitude affect the coordination problem."

For small aileron control commands (§3.3.2.4.1), the amount of allowable
sideslip is given in the figure below.
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Figure 63, Allowable sideslip for small aileron confro! commands,

This requirement applied for step aileron control commands up fo the
magnitude which causes a 60° bank angle change in two seconds or

2m

w Y 2
ng 1 %4

seconds,

whichever is greater,

The difference in allowable ABmax with g "is almost totally due to the
difference in ability to coordinate during furn entries and exits, Yg is a
direct indicator of the difficulty a pilof will experience in coordinating a
turn entry, For -180°> Yg 2 -270°, normal coordination may be effected..,.
As g varies from -270° to -360° coordination becomes increasingly difficult,
and in the range -360° < Yg < -90° cross controlling is required to effect
coordination. Since pilots do not normally cross control and, if they must,
have great difficulty in doing so for -360° < Yp < -90°, oscillations in
sideslip either go unchecked or are amplified by the pilot's efforts to co-
ordinate with rudder pedals."”

To extend roll-sideslip coupling requirements fo targer contro! deflec-
tions, §3,3.2.3 states that the value of the parameter

o * 95 - 20
¢osc/¢average - b, + b5+ 205
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where ¢1, 92, ¢3 represent successive peaks in the bank angle time history
(2 is a minimum peak), shali be within the Iimits shown on the figure below,

Category B

"7 g

' . l|'.:ategc.:ries A&C I

-40° -80" -120° -160° -200° -240° -280"~ 320" - 360°
wg when p leads § by 45" to 225
| | | 1 N | | L J
-220" ~260° - 300" -340° -20° -60° ~100° —140° —180°
'pg when p leads g by 225° through 360°to 45°

Figure 64. Limits for extending roll-sideslip coupling reguirements to
targer control deflections.

Similar requirements designed to insure control precision in the roll

mode are given in 83.3,2.2.1, which requires that Pogc/PAY be as shown in
The figure below.
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Figure 65. Requirements for insuring control precision in the roll mode.

This requirement applied for step aileron control commands up to the magni-
tude which causes a 60° bank angle change in

3.47

7
¢ 1ty

seconds,

W
n

For larger rol!l rates, §3.3,2,2 states that following a rudder-pedals-free
step aileron control command, the roll rate at the first minimum following
the first peak shall be of the same sign and no less than 60% (categories
A and C) or 25% (category B) of the roll rate of the first peak.

Additional evidence of fthe bearing which rolling moment due to sideslip
has on pilotts opinion of an aircraft's handling qualities is provided by
+83.3,2.1 which states that roll acceleration, rate, and displacement responses
to side gusts shall be investigated for airplanes with farge rol!ing moments
due fo sideslip.

As mentioned at the beginning of this section, modern concern with air-
craft handiing characteristics has centered on precision of response and
total pilot work load. The paragraphs of MIL-F-8785B (Ref, 4) cited above
demonstrate this concern clearly. TND-3726 (Ref. 55), citing the fact "that
the stability and control characteristics of the airplanes (tested) are
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generally satisfactory but deteriorate with reduced speed, increased power,
aft center-~of-gravity location and changes to the landing configuration,.,
and are critically degraded in turbulent air" and that "in general, each
stability and control degradation is retatively smali" suggest that "reduced
pilot rating results from the combined effects of all deteriorations" and
that it is "therefore necessary 1o consider the combined effect of all the
stability and control characteristics in order to properly assess the pilot
ratings." The authors of TND-3726 (Ref, 55) suggest that this be done by
evaluating a work load factor defined as

work load factor = fgo SeCIFe|dT + fgo SeC|Fa|d+

30 sec
+ [ [F_ldt.

The integrals are the areas under the curves of the three pilot-applied
force time histories taken over a 30 sec period with the aircraft origin-
ally in a trimmed state. "The satisfactory airplane presents a work load
factor of approximately 300; whereas the unsatisfactory airplane approaches
a factor of 500." Clearly, a requirement of this type will ultimately be
made part of the flying quality specifications,

Many of the quantitative tests from which the specification writers
gained guidance were performed in simulators or in variable stability air-
planes. Resultfs reported in TND-746 (Ref, 58) and TND-779 (Ref., 59) for
exampie, showed the importance of the Dutch Roll frequency and damping in
establishing the Iimiting behavior which the pilot could control. TND-22I
(Ref. 60) reports pilots require 0,23 sec to begin to move the stick later-
ally and 0.33 sec longitudinally. TND-173 (Ref. 6!) reports results of a
study to provide artificial longitudinal stability. TND-1782 (Ref. 62)
provides data on the transfer function of human pilots. It should be noted,
however, that such data cannot be accepted without some qualification: human
pifots display a very high degree of adaptabitity to devices designed to
measure their response capabilities and thus exhibit different transfer
functions with increasing time or as the control task is varied.

Several very recent full-scale wind tunnel studies on the stability
and control characteristics of representative light aircraft are reported
in References 63, 64, and 65, Results of a program of artificial stab!lity
augmentation and work load reduction on a popular light twin is presented
in considerable engineering detail in Reference 66, This program is notable
in beginning with a competent analytical atfack on the problem (and in de-
tailing the numerical calculations), in devising an ingenious roll~yaw
coupler especially suited to this type aircraft, and in presenting details,
including transfer functions, of the flight hardware,

Finally, for a very interesting review of the chronology of man's un-

derstanding of aircraft stability and control, fthe reader is referred to the
1970 von Karman Lecture given by Dean Perkins (Ref, 67),
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Yaw Control

The uses of the yaw control in aircraft include, according to
AFFDL-TR-69<72 (Ref. 4),

(a) To perform a cross-wind landing<<either employ
a steady rudder-pedal-induced sideslip or else
a decrab maneuver,

(b) To augment roll rate anywhere within the flight
envelope,

(c) To raise a wing when the pilot is busy with his
hands, such as when taking a clearance,

(d) For tracking.

(e) For wing=-overs...to obfain a rapid change in
heading or bank angle.

(f) For close~-formation flying.

(g) To lose altitude as in a forward sideslip or to
improve visibility.

(h) To counter yawing moments from propeller torques,
speed change, asymmetric thrust, stores, efc.

(i) To taxi.

The reader will note that from a handiing standpoint these uses are of two
types: primary control of motion about the yaw axis and precision of control
in coupled lateral-directional motions. Primary control about the yaw axis
is much like primary control about the pitch axis: +the aircraft can be pro-
vided with inherent static stability, the forces experienced by the pilot
are a good measure of the out-of-trim condition, and most of the longitudinal
stabil ity parameters have directional analogs. Thus, one can write

U2 CnB
FF:G(Z)nVSrCr Cn B* 0\ P~ Cn %t |
o - ) Ns )
_I.
C
dF 2 n
_r = _gfeY- B
dg G( 2 )nvsrcr Ch + Ch C ’
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-

and
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With the usual assumption of constancy in the values of the stability der-
ivatives, these relations provide a means to compare the primary directional
handl ing parameters of proposed aircraft with the specification requirements
quoted below. Note that to keep the variation in force required with changes
in speed reasonable and thus minimize the need for retrimming it is necessary
to make Chy and Chg as small as possible. Such a step will also aid in
keeping The force required to produce given sideslips (and thus aid in rolling
maneuvers) within reason.

Primary yaw controf in the present connotation consists of those functions
which can be provided only by rudder deflection. Included in this list would
be items such as (a), (e), (g), (h), and (i). The precision-of-control items
in the list indicate that for these circumstances the rudder is used princi-
pally to complement aileron control, fo improve its precision by countering
adverse yawing moments (Cps. or Cpn ) or to provide small additional favorable
rolling moments (Cgr). The table "below shows how the desire to permit these
uses was translated into quantitative requirements.

REQU I REMENT REFERENCE
Max imum rudder force
temporary 150# FAR 23.143
steady 20#
Rudder force <50# to counter sideslip MIL~F-8785B
in rolls. §3,3.2.5
Coordinated turn which reaches 45° of
bank should require less than 40# of §3.3.2,5
rudder.

50# of rudder force must induce a roll

rate of 3°/sec. 83.3.4.5
If the aircraft is trimmed with symmetric

power it must be able to change speed *30% §3.3 5 1
without requiring more than 100# of rudder T
force.

No more than 100# of rudder force must be §3.3.5.1.1

necessary for asymmetfric loading.

(continued on next page)
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REQU IREMENT

REFERENCE

The ratio B/6. must be essentially linear
to *15° with the slope permitted to be
smal ler for B>i5° but still positive. The
ratio B/Fr must be essentially linear fo
*10°. F, may be less for larger values
but never zero.

§3,3.6.1

For the aircraft ftrimmed for ¢=0 flight

these requirements apply at sideslip angles
produced or |imited by
(a) full rudder pedal defliection
(b) 250# rudder pedal force
(c) maximum aileron control or
surface deflection.

§3.3.6

Control centering and breakout forces shall
be between I# and 7#.

§3.5.2.1

Control surface response shall not lag
cockpit control force input by more
than 30° (phase angle) for frequencies
equal to or less than I|/TR.

§3,5.3

Cockpit control deflection shall not
lead control force.

§3,5,3.1

|t shall be possible to ftake off and land
with normal pilot skill in 90° cross winds
from either side with velocities up o 20
knots. Rudder forces shall not exceed [00#.

§3,3,7

Rudder control power shall be adequate to
maintain wings level and sideslip zero
without retrimming throughout dives and
pulfups. In the service flight envelope,
shall not exceed [80#.

§3.3.8

It shall be possible fo taxi at any angle
to a 35-knot wind.

§3.3,7.3

Rudder forces shall not exceed #180 to
maintain a sfraight path in the event
of sudden loss of thrust during take-off,

§3.3,9,1

Table 13. Yaw control requirements.
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Current light aircraft offen require fairly large (~185 Ibs) rudder
forces in 15° steady sideslips (Ref, 56) or as a result of the application
of power--up to 90 iIbs change between idle power and maximum power at a
given airspeed (Ref, 55)., Pilots considered the latter unsatisfactory al-
though 1t would satisfy the specification. Note that brake forces in auto-
mobiles in excess of 100 ibs are generally regarded as undesirable while
forces in excess of 200 |bs are regarded as unacceptable, In this regard,
the FAR maximum rudder force requirement appears to be far more reasonable
than that of MIL-F-8785B (Ref. 4), particularly considering that diminuative
women should be able to operate a light airplane comfortably. The specifi-
cations are also notable in omitting any quantitative limitation on rudder
pedal fravel. While this is another aspect of the present unsatisfactory
state of directional control requirements, the condition likely stems from
the fact that most directional control during flight is now accomplished
through aileron manipulation which the pilot can perform very precisely
and for which the force-deflection-response relations are prescribed in
great detail.

I+ is felt by several pilots consulted by the authors that the force
{imits quoted in the military specifications should be applied only to the
faster and heavier aircraft of the general aviation class. |1 was their
contention that one should reduce these |imits progressively as maximum
speed and weight are reduced so that for the lightest and slowest aircraft
in the class the maximum forces will be no greater than 1/3 or 1/2 the
specification values. The reasoning apparently follows the usual human
expectation that larger vehicles require larger forces to control them.
That this is not necessary, however, is evident from the popular acceptance
of power steering and power brakes on automobiles. With these devices the
forces are made more or less independent of car size. |I1 is to be
expected, therefore, that as "fly-by-wire" control systems are installed
more widely in aircraft a frend foward standardization of control feel,
riding qualities, and handling qualities for aircraft of all sizes,
speeds, and weights wil! develop.
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Handling in Turbulent Air

The discussion above has assumed that the air mass through which an
aircraft is filying is uniformly stationary with respect to inertial space.
Nature, however, is seldom so accomodating, and many aircraft experience
severe deterioration in handling qualities during flight in turbulent air
(Ref. 55), Analysis reported in Reference 4 Indicates that a first order
treatment of the problem can be performed. Gusts are considered to be iso-
tropic away from the ground, Gust velocity variation with spatial frequency
for two models is used to obtain gust components of u(x), v(x), and w(x,y).
From these, one can calculate gust components for o, B8, p, q, and r and,
subsequently, the altered values of the stability derivatives, 1t is seen
therefore that all airframe dynamic modes can be excited in gusts. |If these
are insufficiently damped, if the lateral~directional coupling is excessive,
or if the static stability is marginal, the pilot's work load will increase
markedly if he attempts to maintain a reasonably precise course or comfor-
table ride. Outstanding handling qualities in still air are consequently
a necessary prerequisite to acceptable handling in turbulent air.
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INERTIAL CHARACTERISTICS

The airplane designer is directed to the section of this study dealing with
spin entry for a discussion of dynamic response resulting from changes in moments
of inertia; Techniques for estimating moments of inertia are detailed here.

When an airplane is rotated about its center of gravity, the resulting
forque, I', is equal fo the product of the moment of inertia about the c.g.
and the angular acceleration (I' = I dw/dt). Since the torque is applied by
a control surface, the angular acceleration can be found for a particular
control deflection by dividing the forque by the moment of inertia. The
three angular degrees of freedom for the airplane are pitch, roll, and yaw;
thus, it is necessary to know the moments of inertia about the X, y, and z
airplane body axes. One product-of-inertia term, I,,, also appears in the
equations of motion (see Appendix A), but this term is usually small, and,
for many analyses, is considered zero, indicating that all the axes are
principal axes.

Moments of inertia can be obtained by experimental measurements or can
be estimated from airplane mass and geometric characteristics. The usual
method for determining experimentally the moments of inertia is a pendulum
method.

The application of the pendulum method 1o The experimental defermination
of moments of inertia of airplanes is discussed in TR-467 (Ref. 68). The
moments of inertia about the x and y axes are found by swinging The airplane
as a compound pendulum, whereas the moment of inertia about the z axis is
determined by oscillating the airplane as a bifilar-tforsional pendulum. The
differential equation which describes the pendulum motion is of the form,

2

prea + b6 =20 where I = measured moment of inertia
b = constant depending on the weight and
dimensions of the pendulum
9 = anguiar displacement.

The period can be written as T = 2n/V b/I , and the moment of inertia can be
solved by solving for I. For each of the cases mentioned above, the true
moments of inertia are determined by correcting the measured moments of inertia
for (1) the buoyancy of the structure, (2) the air entrapped within the
structure, and (3) the additional mass effect. These three factors cause an
apparent additional moment of inertia, which is evaluated on the basis of (1)
the airplane size and shape normal to the direction of motion and (2) the
results of tests of the additional mass effect of flat plates. Reference 68
should be used to evaluate the required corrections. The additional mass effect
(moment of inertia influenced by the surrounding medium) results from the fact
that the period of the pendulum's vibrating in air is to some extent dependent
on the momentum imparted by Its motion through the air. The momentum imparted
to the body is proportional fto the momentum of the body; thus, The equivalent
additional mass may be used.

The precision of the pendulum method to estimate true moments of inertia
is approximately 2.5 percent, #1.3 percent, and #0.8 percent for the x, y, and
z axes respectively. Several types of airplanes of gross weight less than
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10,000 pounds have been tested at the NACA laboratories, the results of which
were compiled and published as NACA TN-780 (Ref. 69) which supersedes TN-375.
Only a few of the airplanes tested are characteristic of the light airplane
designs of today. This report, however, is valuable In obfaining an approxi-
mate number for the moments of inertia and the radii of gyration. Agard Report
224 (Ref. 101) also discusses methods of obtaining the moments of inertia by

the spring oscillation method. Schematic representation of typical methods for
determining (within 5% or better) the rolling and pitching moments of inertia
are given as well as other references which may be heipful in using these
methods.

Because of the equipment required fto measure the moment of inertia by the
pendulum method, probably the most popuiar method utilizes the weight and lo-
cation of component parts outlined in TN-575 (Ref. 70). This is a step-by~-step,
tabulated method which yields the moments of inertia about the three axes, the
products of inertia, and the center of gravity locations. It is believed that
the moments of inertia can be estimated within 10% by this method and can be
applied by compieting Table 14, which is explained below.

The first step in the procedure is to define a set of three mutually
perpendicular reference planes, x"z;, y“z; and x"y”, as shown in the figure
below.

\Reference plane

L~

\xl zl
Reference
plane

—-Center
of
gravity //
7 —xy
P \ Reference
\\plane

A

7
yBody axis~”

/ ~ /
i o/ A
z! Reference axis /N
;o
x! Reference axis—— — ~

~ .—y!' Reference axis

Figure 66. Set of three mutually perpendicular reference planes.
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The plane of symmetry is chosen as the x“z” reference plane, since it contains
the c.g. The y“z” reference plane is usually set at the nose of the alrplane,
while the x“y” reference plane can be established at the top or the bottom.
These reference planes define the origin of the coordinate axes.

The table which must be completed is shown below and explained column
by column.

(1 (2) (3) (4) (5) (B6)Y (7) (8) (9) (10) (11) (12) (13) (14)
T RS- B VL GEC U S
r Z = = = — H — =z
- . < < <

4=
=

Totals

Table 14. Sample table for obtaining inertial characteristics.

Column (1) Elements of the airplane which are considered (flaps,
wheels, baggage doors, engine, seats, pilot, fuel,
etc.).

Column (2) Weight of each individual element.
Columns (3), (4), & (5) Distance from the x”, y~ and z” axes to

the element. It is important fo hote that some of
these distances may be either positive or negative.

Columns (6) & (7) Moments contributed by each element. Since the
airplane is symmetric about the x“z” plane, wy = 0;
therefore, it does not appear.

Columns (8), (9), & (10) The product of the squares of the indi-
vidual distances and the item weight.

Columns (11), (12), & (13) The estimation of the moments of iner-
tia of The larger items about their own center of

gravity.
Column (14) The total product of ‘inertia, I,,.
The information in the above columns can be used fo find
(1) c.g. Location--The x and z c.g. locations (xC and z. %)

can be found by dividing The fTotals of columns {6) and (
respectively by the total weight.
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(2)

(3

Even for the large items, the products of inertia about their own c.g. can

usually be
the comple

Moments of Inertia--The ftotal moments of inertia of the air-
plane about the three reference axes are

T -y~ = Swy? + Iwz® + IAL,,

I, ~,~ . 2 2
Yy = Zwx*< + Zwy + ZAIyy

2 2
I,.,- = Zwx® + Iwy® + IAT,,

The moments of inertia about the c¢c.g. can be written as

— P 2 2
Iy = Iy~~~ Wixc,g.? + zc.g.2)

Ixx = Ix‘x’ = W(Zc.g.z)

I, = Iz227 - w(xc.g.z)

where W = total alrplane weight

Product of Inertia--The product of inertia, Iy,, about the
c.g. can be found by the formula,

I, = Zwxz - W(xc.g_ t zc,g.)

neglected. Also, for light aircraft, the products of inertia for

te aircraft are usually smail or negligible. Thus, for a first

approximation, assuming the products of inertia to be zero is fairly accurafe.

If greater

accuracy is required, the formula above can be used.

Some typical values of moments of inertia can be seen for |ight aircraft

by examining the ftable below:

Airplane Number I I I
Weight of x> Y 2
(1bs.) Engines (slug-ft2) (slug-ft2) (slug-ft2)
2200 1 902 1335 1922
2650 1 941 1479 2110
3350 1 1495 2207 2878
4650 2 8884 1939 11,001

15,000 2 64,811 17,300 64,543
2100 2 766 1275 1805

Table 15, Typical light aircraft moments of inertia.
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STALL

The flow over a body is said to stall when the pressure gradient becomes
so unfavorable that the velocity at the surface is zero and the mainstream is
no longer attached to the body. When stall occurs on airfoils, there is both
a loss of |ift and an increase in drag. In general, stall can be defined as
that flow condition which follows the first lift-curve peak. TN-2502 (Ref. 71)
indicates three classifications for stall at low speeds: 1) frailing-edge
stall, 2} leading-edge stalil, and 3) thin airfoil stall.

Trailing-edge stall is preceded by the movement of the point of turbulent
boundary-layer separation forward from the trailing edge with increasing angle
of attack (usually characteristic of airfoils of 15% thickness or more). This
type of stall is distinguished by a gradual, continuous force and moment vari-
ation with a well-rounded [ift-curve peak.

The leading—-edge stall is an abrupt flow separation of the laminar bound-
ary layer near the leading edge, generally without subsequent flow reattachment
(usually typical of airfoils 9% fo 15% thick). Little or no change in lift-
curve 'slope should be expected prior to maximum |ift and an abrupt, often
substantial, decrease in lift should occur affter maximum [ifft is attained. A
combined leading-and trailing-edge stall is possible.

The thin airfoil stall is preceded by flow separation from the leading
edge, with the reattachment point moving progressively downstream with increasing
angle of atfttack. This thin airfoil stall has a rounded |ift-curve peak, gen-
erally preceded by a discontinuous force and moment variation for airfoils

witTh a rounded leading edge.

The stalls mentioned above are shown in the figure below.

Lift coefficient ————»>

Angle of Attack —————

Figure 67. Characteristic stall types.
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Not every airfoil can be classified uniquely into a given stall category, nor
is each type of stall limited to a certain range of thickness ratios.

Since stall characteristics play a major role in the design of any air-
plane, it is important to know at the outset at what angle of attack the stall
occurs, depending on the weight, speed, and maximum |ift coefficient of the
airplane. The abrupt stall has proven to be quite dangerous because the pilot
receives little or no warning before attaining a critical attitude. Also, if
stall occurs during landing or take-off, the pilot has little or no altitude
in which to recover. Many parameters affect the stall of a body or wing:
taper, aspect, and thickness ratios; Reynolds number; camber; washout; and
leading~edge shape. Before considering the parameters which affect stall, some
mention should be made of the requirements for good stall warning and recovery.
Technical Report AFFDL-TR-69-72 (Ref. 4) defines stall warning requirements,
stall characteristics, and stall recovery requirements for light military
aircraft.

Stall Warning

The stall aproach shall be accompanied by an easily
perceptible warning.

Acceptable warning for all types of stalls consists of shaking of the
cockpit controls, buffeting or shaking of the airplane, or a combination of
these. The onset of this warning should occur within the ranges specified by
the two fables below.

Warning speed for stalls at 1g normal fto the flight path. Warning
onset for stalls at 1g normal to the flight path shall occur be-
tween the following limits:

Flight Minimum Stall Warning Maximum Stall Warning
Phase Speed Speed
Approach Higher of 1.05Ug or Higher of 1.10Ug or
Us + 5 knots Ug + 10 knots
All Other Higher of 1.05Ug or Higher of 1.15Ug or
Ug + 5 knots Ug + 15 knots

Table 16. Warning speed for stalls at 1g normai to the flight path.
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Warning range for accelerated stalls. Onset of stall warning shall
occur outside the Operational Flight Envelope associated with the
Airplane Normal State and within the following angle-of-attack

ranges:
Flight Minimum Stall Warning Maximum Stall Warning
Phase Angle of Attack Angle of Attack

Approach 0o *+ 0.82 (ag - dgp) o + 0.90 (ag - ag)

All Other 0p + 0.75 (ag - 0p) ap + 0.90 (og - ag)

where ag is the stall angle of attack and oy is the angle of attack
for zero |ift.

Table 17. Warning range for accelerated stalls.

Stall angle of attack is the angle of attack at constant speed for the configu-
ration, weight, and c.g. position which is the lowest of the following:

(a) The angle of attack for the highest steady
load factor, normal fo the flight path, that
can be obtained at a given Mach number;

(b) The angle of attack for a given speed or
Mach number at which uncontrollable pitch-
ing, rolling, or yawing occurs (i.e., loss
of control about a single axis);

(c) Angle of attack for a given speed or Mach
number, at which infolerable buffeting is
encountered.

The increase in buffeting intensity with further increase in angle of attack
should be sufficiently marked fo be noted by the pilot. This warning may be
provided artificially only if it can be shown that natural stall warning is not
feasible.

Stall Characteristics

In unaccelerated stalls, the airplane shall not
exhibit uncontrollable rolling, yawing, or downward
pitching at the stall in excess of 200.

It is desired that no pitch-up tendencies occur in unaccelerated or accel~-
erated stalls. In unaccelerated stalls, mild nose-up pitch may be acceptable
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if no elevator control force reversal occurs and if no dangerous, unrecoverable,
or objectionable flight conditions result. A mild nose-up tendency may be
acceptable in accelerated stalls if the operational effectiveness of the air-
plane is not compromised and

(a) The airplane has adequate stall warning;

(b) Elevator effectiveness is such that it
is possible to stop the pitch-up promptly
and reduce the angle of attack;

(c) At no point during the stall, stall ap-
proach, or recovery does any portion of
the airplane exceed structural limit loads.

These requirements apply to all stalls resulting from rates of speed reduction
up to four knots per second (4.6 miles per hour, per second). Stall charac-
teristics are unacceptable if a spin is |likely to result.

Stall Prevention and Recovery

I+ shal! be possible to prevent the compiete stall

by moderate use of the controls at the onset of the
stall warning. It shall be possible to recover from
a complete stall by use of the elevator, ailerons,
and rudder controls with reasonable forces, and fo
regain level flight without excessive loss of alti-
tude or build-up of airspeed. Throttles shall remain
fixed until speed has begun to increase when an angle
of attack below the stall has been regained. In the
straight-flight stalls with the airplane trimmed at

a speed not greater than 1.4 Ug and with a speed re-
duction rate of at least 4.0 knots per second, ele-
vator control power shall be sufficient fo recover
from any attainable angte of attack. On multiengine
aircraft, it shall be possible to recover safely from
stalls with the critical engine inoperative.

This requirement applies with the remaining engines up To thrust for level
ftight at 1.4 Ug, but these engines may be throttled back during recovery.

Although some light aircraft may have special stalling problems, such as
nacelles stalling at high speeds where they can produce a significant {ift,
causing the airplane to attain dangerous attitudes, the stall problem is
usually solved if the wing has good stall characteristics. NACA TR-703 (Ref. 72)
is a set of design charts prepared to show the effects of wing geometry on the
stalling characteristics of tapered wings; a summary of these effects is
presented in Table 18.

159



GEOMETRIC PROPERTY/WING

EFFECTS ON STALL

Taper

Increasing taper tends to move the stalling

point progressively outboard and fo decrease
the stalling margin of most of the remaining
wing.

Aspect Ratio

An increase in aspect ratio ftends to flatten
the section |ift distribution; up to an as-
pect ratio of 18, fthe effect on the stalling
point is relatively small.

Thickness

An increase in root thickness ratio beyond
0.15 causes the stalling point to move in-
board, except for the lowest values of
Reynolds numbers tested, and tends to re-
duce the rate at which the section 1ift
and maximum section lift diverge inboard
of the Initial stailing point.

Camber

Increasing camber |inearly from root fto Tip
(4%) appears to be useful to good stall
characteristics only for low faper ratlos.

Washout

Although washout is expensive in regard to
drag considerations, it offers an effective
means of improving stalling characteristics.
Washout becomes more effective as Reynolds
number is increased.

Reynolds Number

An increase in Reynolds number tends tfo
move the initial stalling point inboard.

Sharp Leading Edge

A sharp leading edge reduces the maximum
section |ift coefficient so that stalling
takes place inboard where the sharp edge
is located.

Table 18.
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Thus, for good stall characteristics, wings with low taper ratios, moderate
thickness (10% to 15%), low to moderate Reynolds numbers, 1° to 3° washout,
and a sharp leading edge at the root seem the most desirable.

WR L=145 (Ref. 73) points out that surface roughness and propeller effects
should also be considered as parameters affecting airplane stall. The air-
planes tested for the report were military aircraft of the mid 1940's. Because
of the armament required, the airplanes were equipped with numerous access
doors, inspection plates, and numerous other features that tend to make the
wing extremely rough and allow air leakage through it. It was found that a
wing which was faired and sealed gave a higher Ciyax then an unfaired wing,
even though both wings stalled at approximately the same angle of attack.

The study also indicated that propeller operation generally increases the
severity of the stall, especially on single-engine airplanes. The rotation
within the slipstream increases the effective angle of attack of the wing
section behind the up-going propeller blades and decreases the effective angle
of attack of the wing section behind the down-going propeller blades. An
asymmetrical stall pattern is thus produced, leading to a sometime severe
rotl.

WR L=296 (Ref. 74) indicates that airplanes of the 1930's solved the
problem of stall by providing a definite warning of the approaching stall through
backward movement, position, and forces on the control column. Monoplanes
usually had little or no taper with "inefficient" wing-fuselage junctures,
causing a gradually developing stall, beginning at midspan. Thus, the stalled
condition developed progressively after a reasonably definite warning; also,
lateral control was often maintained up to or beyond the stall. Many of the
airplanes designed in the 1940's depicted trends toward higher wing loadings
and landing speeds; less emphasis was placed on stalling tendencies, thus
leading to airplanes with poor stalling characteristics. WR L-296 also
indicates that sharp leading edges at the wing root may improve poor stall
tendencies. Another proposed solution is limitation of longitudinal control
to prevent the wing from reaching maximum [ift. To be effective, a warning
must occur at an angle of attack considerably below that of maximum |ift
because gusts or inertia effects may momentarily carry the airplane beyond
the warning attitude. An investigation was made In WR L-296 (Ref. 74)
of a "stall-control flap." The basic wing fested was a 23012 section with a
60% chord flap. The idea was to deflect the stall-control flap so that the
modified airfoil would have a shape similar to the 4412 airfoil, which has
good stall characteristics because of its relatively flat lift-curve peak.
The flap was considered aerodynamically satisfactory with or without high
[ift devices, even though it may be very expensive to install. The graph
below indicates the effect of the flap deflection on |ift-curve shape.
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Figure 68, Investigation of a stall control

flap in WR L-296 (Ref. 74).

NACA TN-1868 (Ref. 75) is a study made to correlate pilots' opinions of
the stall warning properties of 16 airplanes, ranging from single-engine fighters
to four-engine bombers, with a number of quantitative factors obtained from
Time, history flight records for speeds near stall. The altitude test range
was 4,000 to 12,000 feet, with stalls attained in straight flight by gradually
approaching the stall with the normal acceleration factor as close to unity as
possible. The tests indicate that, in general, the stall warning is considered
satisfactory by the pilots when characterized by any of the following qualities:
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(a) Airplane buffeting at speeds 3 to 15 mph
above stalling speed and of a magnitude
to produce incremental indicated values
of normal acceleration factor from 0.04
to 0.22;

(b) Preliminary controllable rolling motion
from 0.04 to 0.06 radians per second oc-
curing anywhere within a range of 2 to
12 mph above the stalling speed;

(c) At least 2.75 inches rearward travel of
the control stick during the 15 mph
speed range immediately preceding the
stall.

The two graphs below indicate the satisfactory and unsatisfactory ranges of
both normai acceleration increments, Figure 69, and rearward movement of the
control stick, Figure 70, versus speed above the stall. Each line represents
a separate test of one of the 16 airplanes. A, is the normal acceleration
increment.
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Figure 69:. Correlation of pilot opinion of stall warning with
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Figure 70. Correlation of pilot opinion of stall warning with
rearward movement of control stick in the speed
range immediately above stall.

In a summary of various stall-warning devices, TN-2676 (Ref. 76) points
to the fact that a warning light, stall-warning dial, rudder shaker, or stick
shaker may be necessary for any aircraft with very poor stall-warning charac-
Teristics. Such indicators can possibly be actuated by such devices as a
leading-edge orifice, leading-edge tab, spoiler and pitot-static tube, frailing-
edge pitot static tube, or frailing-edge vane. Light airplanes without hydrau-
}ic control sysftems will probably never need to use these devices.

TN-2923 (Ref. 77) describes the testing of a low-wing, light airplane model
during the stall and Into the incipient spin. A more detailed review of this
report is presented below in the discussion of spin entry.

it should be noted that in seeking to analyze the motions of aircraff near
stall, the usual assumptTion that the longitudinal stability derivatives are
constants is no longer true. The derivatives are very strong functions of «.
Also, downwash and sidewash fields are very strong and unstable under these
conditions. Dynamic pressure may vary considerably along the span. Finally,
a deep stall is usually accompanied by sufficiently large motions that one can
no longer assume with accuracy that products and squares of pertubation velocities
can be-neglected. For These reasons, exfreme care must be used in attacking

This problem analytically.
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SPIN ENTRY

The capacity for attaining a spinning attitude while performing ordinary
flight maneuvers and the fact that many light aircraft accidents have been
attributed in the last few years to stall/spin problems has led to extensive
research by NACA/NASA concerning spin entry and recovery. More than 25
NACA/NASA reports deal with spin applicable to light aircraft design. Much
of this literature was written in the late 1940's and early 1950's because
the higher wing and fuselage loadings of more modern aircraft are not char-
acteristic of the majority of the general aviation aircraft.

A developed spin is usually considered to be a motion in which an air-
plane in flight, at some angie of attack between the stall and 90°, descends
rapidly toward the earth while rotating, with the wings nearly perpendicular
to a vertical or near-vertical axis. Special consideration must be given to
spins in the design stage, since controls effective in normal flight might be
inadequate for recovery from the spin. The same factors which may cause
difficulty in attaining a spin also may impede recovery from it, once attained.
Besides the problem of providing adequate controls for recovery, there is
also the problem of pilot disorientation resulting from the developed spin;
thus, preventing the spin or recovering during the incipient phase (the motion
between the initial stall and the developed spin) is essential. Civil Air
Regulations require that the pilot of a personal-owner airplane recover from
a one-turn spin upon release of controls by the pilot; this may mean that
controls be designed to float against the spin.

Of the numerous significant reports reviewed for this study, two are
considered of primary interest--Airplane Spinning by James S. Bowman (Ref. 78)
and Status of Spin Research for Recent Airplane Designs by A. |. Neihouse,
et al (Ref. 79). The latter discussed spin-tunnel testing and its correlation
with actual flight tests, the influence of airplane geometry on spinning,
and a summary of the spinning characteristics of 21 model alrplanes, including
mode! and full scale correlation. Airpiane Spinning is a state-of-the-art
summary of spin prediction and alleviation.

Experience has indicated that spins and spin recoveries of airplanes
can be investigated safely and at a comparatively moderate cost using small
dynamic models in a spin tunnel.* |+ is important that the model be designed
so that geometricaily similar paths of motion between the model and the
airplane are attained in the spin; this is accomplished by holding The force,
mass, and time ratio constant as well as the ratio of linear dimensions in the
model design. [t is hand-launched with a spinning motion into the spin
funnel, and the vertical speed of the column of air is adjusted to maintain
a spinning attitude of the model at a particular height in the ftunnel. It
is assumed that, for most spins, the pilot would probably have the airplane

¥ a vertical wind tunnel controiled by a propeller with very fast response
time
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controls set approximately at "normal spinning control configuration"--that
is, stick full back, and laterally neutral rudder full with the spin. Affer
The spin is established, The mode!l control surfaces (rudder, elevator, and
ailerons) are deflected to attempt recovery. Experience has shown that the
criterion for satisfactory recovery for model tests is recovery within 23
Turns of the model after the control surface deflections, Based on this
analysis, when the recovery in the spin tunnel requires more than this number
of turns, the confrols are not sufficiently effective and the corresponding
airplane probably would have unsatisfactory recovery characteristics. One
poor recovery out of several recovery attempts is usually considered as
undesirable as consistently poor recoveries. The philosophy is to assume
tThat a proposed design is inadequate for spin recovery unless it can be
proven satisfactory.

A developed spin involves a balance of aerodynamic and inertial moments
and forces; thus, the effectiveness of any control in promoting or in ter-
minating the spin depends not only on The aerodynamic moments and forces
produced by the control but also on the inertial characteristics of the
airplane. A spin about any axis in space can be considered as a rotational
motion about any axis through the center of gravity. The equations for the
moments acting in a spin* are

. 2 I "I
UKy Tox

Y 2 I "I

& = R Cm,b " zzI XX rp
HKy yy
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ro= Y 5 Cp t+ ala Yy Pq
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The airplane spinning attitude (steep or flat) and its rate of rotation
depend primarily on the yawing and pitching moment characteristics of the
airplane. Low damping in yaw at spinning attitudes or high autorotative yawing
moments lead to flat (high a), fast rotating (high Q) spins. Some interesting
facts can be pointed out by approximating the pitching-moment equation obtained
in equating The aerodynamic and inertial pitching moments:

MYaero
%(IZZ - Ixx) sin 20

Q2 = -

Remembering that a positive pitching moment is nose up, it can be seen that a
nose-down (negative) pitching moment may nose the airplane down but lead to a
higher rate of rotation and may, in fact, flatten the spin. For given direc-
tTional and lateral characteristics, the pifching moment can influence the
motion so that i+t may vary from a high rotative spin to a low rotative spin.

The effect of any control in bringing about spin recovery depends upon
the moménts that the control provides and upon the effectiveness of Those

* assuming the x, y, and z axes are principal axes and that engine effect
can be ignored.
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moments in producing a change in angular velocity and thus in upsetting the
spin equilibrium. Experience has shown that the best way to alleviate the
spinning motion is "o provide a yawing moment about the z body axis to oppose
the spin rotation; Thus, the rudder is usually considered the most important
control, especially for light airplanes. It also appears that elevator effec-
tiveness and aileron effectiveness, in the final analysis, depend upon their
ability to alter the yawing moment of the spin.* Thus, it would seem that the
most effective way to influence the spin and to bring about recovery is to
obtain a yawing moment by applying a moment about an axis which experiences

the least resistance to-a change in angular velocity.** For example, the most
proficient way fto obtain an antispin yawing moment for recovery may be to roll
the airplane in such a direction that a gyroscopic yawing moment to oppose

The spin is obtained. Similarly, if mass is heavily concentrated in the wings,
movement of elevators downward may provide the most effective means of applying
an antispin yawing moment. Thus, because of inertial coupling of a rotating
body, if the moment about one axis is changed, tThe moments about the other
axes are also changed.

By inspecting the equation given eartier for f, it can be seen that the
rudder is the most important control when Ixx - Iyy = 0 because u(defined as
m/pSb) and kz are relatively small, and Cn is a function of rudder deflection.
For modern, high speed fighters and research airplanes, large negative values
of Ixx - Iyy predominate, since the mass is heavily concentrated in the fuse-
lage. For these airplanes, it would be extremely important +o make the inertia
terms antispin (negative for right spin) for recovery. This can be accom-
plished by controlling the algebraic sign of the pitching velocity, e.g., by
tilting the inner wing (right wing in a right spin) down relative to the spin
axis. This tilting of the wing downward makes pitching velocity positive
(g = Q sin ¢ for low values of Ixx) and gives rise to a cross-coupled effect,
which acts in a direction that terminates the spinning. Light airplanes,
however, fall, for the most part, into the category of airplanes designed in
the late 1930's and early 1940's. These light airplanes have relatively small
changes in the inertia ferms which contribute to f*, indicating that the rudder
should be fthe most important control.

The principal factors in spinning are mass disfribution, by far the most
important single parameter, and tail design, particularly important for con-
ditions of zero or near-zero loading (small Iy, - Iyy). By knowing the mass
distribution and tail design, it is possible, in many cases, to predict
whether an airplane has satisfactory spin-recovery characteristics. The mass
distribution of airplanes can be grouped into three general loading categories,
as shown on the following page.

* I+ should be pointed out that if spoilers are used instead of ailerons,
+he spoilers are generally ineffective in the developed spin because of the
area shielded in the spinning attitude.

*¥¥ 3 moment about the axis with the least amount of inertia.
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Figure 71. Primary recovery controls as
determined by mass distribution.

The type of loading shown on the right is classified as wing-heavy loading,

in which the roll moment of inertia is greater than the pitch moment of inertia.
The airplane on the left is an example of fuselage-heavy loading, in which

the roll moment of inertia is less than the pitch moment of inertia. The air-
plane in the center has roll and pitch moments of inertia which are about

equal; this condition is referred fto as zero loading.

The loading of the airplane can dictate what controls are required for
recovery, as explained in WR L-168, A Mass-Distribution Criterion for Predicting
the Effect of Control Manipulation on the Recovery from a Spin (Ref. 80).
Deflecting the rudder against the spin is always recommended, but, for satis-
factory recovery, deflection of other controls is sometimes required. For The
case of wing-heavy locading, down elevator is the primary recovery control,
while ailerons against should also be beneficial; for fuselage-heavy loading,
the aileron is the primary recovery control. In The latter case, the aileron
needs to be deflected with the spin--for example, stick right for a spin fo
the right. Predicting what the effects will be for the zero loading is
difficult; but, almost invariably, the proper recovery procedure is to move
the rudder against the spin and, a short time later, move The elevator down.
The above recovery techniques seem to indicate that spin recovery is simple,
but it is sometimes hard to class a given airplane in one of the three
categories above and, once classed, the controls still may or may not produce
enough antispin moment to achieve recovery.

Tail design is also an important factor in designing an airplane To recover
from spins. Since most light planes fall intfo the zero loading category, the
rudder is of primary importance to a good design. In a spin, there is a dead
air region over much of the vertical tall caused by the wake of the stalled
horizontal tail. For optimum rudder effectiveness, part of the rudder must
be outside this stalled wake. Another factor which affects fail design from
the spin standpoint is that there should be a substantial amount of fixed
area beneath the horizontal tail fo provide damping of the spinning motion.

A criterion for good tail design was determined in the middle 1940's
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(TN 1045, Ref. 81 and TN 1329, Ref. 82) on the basis of spin-tunnel tests

with about 100 different designs.

This criterion Is called the tail damping

power factor (TDPF), a measure of the damping provided by the fixed area
beneath the horizontal tail and the control power provided by the unshielded

part of the rudder.

The tail-damping power factor can be calculated as

shown below in parts a, b, and c of Figure 72.
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Figure 72. Calculation of tail-damping power factor.

The tail damping power factor required to insure satisfactory recovery
is given in the figure below.

_ Airplane Density _ m/Sh

Air Density TP
1600-x10"6
. 1200 Recovery By
Tail 5 Rudder Alone
Damping
FPo\:er 800"
actor -
=35 «,.2 Recovery By
aool g 4 Rudder And
| 15 \ Elevator
(1] A'I 1 i 1 6 u-\-v“i&:“-l 1
-2000 -800 -400 0 400x10*
Fuselage Wing
Heavy Heavy

Mass Distribution, Clxx—lyy)/mb?

Figure 73. Tail design requirements.
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All the data are in the area of zero or near-zero loading, where the rudder
is a primary recovery control and the tail design is of particular importance.
As can be seen from the graph in Figure 68, only a limited part of the total
existing range of mass distributions applies. The plot shows boundaries
indicating the minimum values of the tail-damping power factor required fo
insure satistactory recovery. The hatched side of the boundaries is the
unsatisfactory side. The solid lines are for recovery by rudder alone, and
+he broken !ine shows the boundary for recovery by rudder and elevator. The
boundaries are presented in terms of the relative density factor u. The
value of 4 = 6 is representative of light, single-engine, personal-owner
airplanes, while § = 35 is representative of that for executive jefs.

TN-1329, Tail-Design Requirements for Satisfactory Spin Recovery for
Personal-Owner—Type Light Airplanes, (Ref. 82) is a report dealing specifically
with light airplane design. Its conclusions are based on tests of 60 models
in the Langley spin tunnels. Results of this'investigation are shown in the
plot below.
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Figure 74, Vertical-tail design requirements for
personal-owner~-type airplanes.
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An important plot which indicates other influences of mass distribution on
optimum control movement for recovery from spin is presented below.
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Figure 75. Influence of mass distribution
on optimum control movement
for recovery from spin.

The unsatisfactory region exists because the difference in inertia is low.

As the difference increases either way the control surface (elevator in the
case of positive increase, aileron in the case of negative increase) gains
effectiveness. Based on the inertias, the reversal of aileron effect should
occur at Iy - Iyy = 0; however, due to the aerodynamic effects, the reversal
of aileron effect is shifted from 0 to [(Iyx-Iyy)/mb21X 10* = -50. Thus, in
this vicinity, allerons with the spin (stick right in a right spin) generally
loose their favorable effect and become adverse; for ailerons against the spin,
the converse is true. This result, it is believed, is primarily a result of a
secondary effect associated with positive Chg of the airplane and a resulting
relative prospin increment in yawing moment because of the increment in inward
sideslip that invariably occurs when ailerons are set with the spin. Another
important graph, shown below, is a summary of the most important factors in
spinning and indicates the present state-of-the-art.
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Figure 76. Summary of the most important factors in spinning.

The figure above agrees with current literature; however, it was previously
considered in rudder-elevator recovery procedures that rudder application
should lead elevator application. For an erect spin down elevator increases
the shielding of the rudder more than up elevator; thus, maintaining elevator
up provides maximum rudder effectiveness during rudder reversal. |t should
be noted that, for the extreme loadings on both ends of the scale, no criter-
ia have been developed for predicting the effectiveness of the controls for
satisfactory recovery. The safest way to insure good spin recovery is by
spin ftunnel or flight testing.

The prescribed methods for spin recovery have been given above for the
particular mass configuration desired, but a recovery may still be hard to
achieve. In flight, an airplane enters a spin following roll-off just above
the stalling angle of attack after being brought up from lower angles of
attack. It usually takes an airplane two to five turns to attain a fully
developed spin after starting the incipient-spin motion, with the number of
turns depending upon configuration and confrol technique. One important
fact should be remembered; recoveries are generally achieved much more readily
when attempted during the incipient phase of the spin than when attempted
after the spin becomes fully developed. Thus, some consideration should be
given to the techniques of noticing a spin entry attitude and to ways of
avoiding the fully developed spin.

TN-2352 (Ref. 83) is a spin-tunnel investigation of a low-wing personal-
owner aircraft which was conducted to provide design information for proportion-
ing personal-owner or liaison airplanes for satisfactory recovery from spins
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and for spin proofing. The investigation was intended to be extensive enough
to determine the configurations most [ikely to meet the spin-recovery require-
ments given in Part 3 of The Civil Air Regulation (Ref. 54) and summarized below.

For an airplane licensed in the normai category:

(1) A ¥z-turn recovery after a I-turn spin by releasing controls
(controls assisted to the extent necessary to overcome friction)

(2) "Uncontrollable spin" check--airplane capable of recovering from a
I-turn spin with ailerons at neutral by first completely reversing
elevator and then, if necessary, fully reversing the rudder.

For airplanes licensed in the acrobatic category:

(1Y A 4-furn recovery after 6 turns of the spin by releasing controls

(2) Recovery from a 6-turn spin in 1% additional furns after neutral-
ization of rudder and elevator, ailerons at neutral

(3) "Uncontrollablie spin" check--airplane capable of recovering from a
6-turn spin with ailerons at neutral by first completely reversing
elevator and then, if necessary, fully reversing the rudder

(4) Recovery from "abnormal spins"--a 2-turn recovery after 6 turns
of the spin with ailerons initially either full with or full
against the spin by neutralizing ailerons and fully reversing
rudder and elevator

(5) A I%-turn recovery from a I-turn spin by neutralization of rudder
and elevator with flaps and landing gear extended.

An extensive amount of testing of this light airplane indicated that satisfac-
tory recovery can be readily obtained even if the tail-damping power factor

is not very great, provided the recovery technique used is full rapid rudder
reversal followed approximately % turn later by forward movement of the stick.
The results also indicated that for recovery by merely neutralizing both
controls, especially for rearward c.g. positions, high values of tail-damping
power factor may have an adverse effect upon recoveries. It was found that
different wing planforms had little effect on the model spin and recovery
characteristics. |t was concluded that unless the rudder can be designed to
float against the spin, recovery from a spin by releasing controls might be
difficult unless the elevator can be made to float at deflections farther down
than neutral. It was also concluded that other requirements for recovery by
various movements of the confrols as specified in the aforementioned regula-
tions could probably be met for the various mode! configurations and mass
distributions investigated by maintaining the center of gravity at a forward
position and utilizing a high tail-damping power factor. For fuselage heavy
loading and low TDPF a premature forward stick movement may retard recovery.
Mass changes were significant at low TDPF but not at high TDPF. It may be

of interest to mention that the model spun with a total angular velocity of
approximately 0.35 to 0.5 revolutions per second.

An investigation of the effect of center of gravity focation on the spinning
characteristics of a low-wing monoplane model is given in TR-672 (Ref. 84).
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Moving the c.g. forward steepens the spin, increases £b/2U, and improves
recovery; similarliy, moving the c.g. back fends to flatten the spin, decrease
Qb/2Y, and retard recovery. A report in the same series of investigations,
TR-691 (Ref. 85), gives the effects of airplane relative density. The findings
in this report are that, in most cases, an increase in relative density
produces flatter spins, higher velocities, lower values of Qb/2U, and slower
recoveries.

NACA TN-570 (Ref. 86) is directly applicable to light airplane design.
This par+|cular report investigates the effect of different tail arrangements
on the spinning characteristics of a low-wing monoplane model. Results of this
investigation indicate that a reduction in tail length resuits in spins with
higher angles of attack, higher values of £b/2U, and slower rates of descent.
Recoveries from the spin seem to depend critically upon the exact location
of the vertical surfaces. It is also concluded that, by making certain
reasonably small changes in the tail arrangement, all the spinning charact-
eristics, except the amount of sideslip, can be changed through wide ranges.
This again points out the importance of tail design in light airplane spin
recovery.

TN-608 (Ref. 87) is another investigation in which a series of models were
tested in the spin tunnel. It was found that rectangular and faired tips give
the steepest spins and flaps tend to retard recovery; for controls with the
spin, tail B (below) gives steeper spins than tail A, with generally satisfac-
tory recovery for either tail, while tail C generally gives slower recoveries.
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Figure 77. Effects of various aircraft tails on spin recovery.
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The effect of such devices as antispin fillets and dorsal fins on spin
recovery characteristics can be found in TN-1779 (Ref. 88). Data from 21
different models were used to determine the action of fillets in damping of
spin rotation, and 30 models were investigated for the effect of dorsal fins.
The effectiveness of antispin fillets for spin recovery appear to depend
primarily upon the fact that the fuselage area below the fillets becomes
effective in damping the spin rotation. Whether or not the fillets improve
The recovery characteristics of a given design is still a function of the
tail-~-damping power factor of the design and the mass distribution. Dorsal
fins generally have little effect on spin and recovery characteristics.

TN-1801 (Ref. 89) should be mentioned because it is a spin investigation
of a twin-tail light airplane model with |inked and unlinked aileron controls.
I+ was found that when the rudders and ailerons are linked for two-control
operation, the model generally does not spin. The spins obtained in this
study were steep, and the tests resulted in satisfactory recovery.

TN~2923 (Ref. 77) is another report in which a light airplane was
tested. The moticn of a personal-owner or liaison alrplane through the
incipient spin was analyzed. It was found that, after the initial stall and
immediately after the model becomes unstalled, the rates of yaw and pitch
are relatively small, and the rates of roll begin to decrease. There also is
little loss of altitude up to this time and the results indicate that, even
though the airplane may be inverted, a time soon after the roll-off has
started appears to be a desirable time to attempt to terminate the motion.
i+ is felt that the motions attained in this investigation are indicative of
the motions of a low-wing, light airplane in the incipient spin. AlfThough
evaluation of the parameters in incipient-spin motion is not freated
specifically in the equations of motion presented in Appendix A of tThe present
study, these parameters could be obtained by proper application of the tech-
niques used in that derivation. Below are some example plots of angular
displacements and angular velocities versus fTime for the incipient spin caused
by a right roll-off shown in Figures 78 and 79.
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HUMAN FACTORS

For maximum safety fto an aircraft and its occupants, the pilot must be
able to control aircraft motion during all flight conditions. One possible
means of attaining this objective is to design the aircraft controls for the
"average" man; however, AFSC DH 1-3 (Ref. 90) indicates that less than one
per cent of the population is "average" in the five dimensions considered. Thus,
designing for the "average" man appears unsound. The concept of "design |imits"
offers a more real istic approach. With this idea In mind, the following
discussion centers on the pilof's comfort from a "design limit" viewpoint.
Using anthropological data, comfort limits for pilots of general aviation air-
craft are examined.

Setting the proper minimum force reduces the iikelihood of accidental
activation of a control, especially those controls on which the pilot must
continuously keep his hands or feet. An upper Iimit is needed To insure that
required control forces do not exceed the pilot's capabilities. Several
generallzations concerning force applications fo control devices are given in
AFSC DH 1-3 (Ref. 90):

a) Force application is equally accurate for
hands and feet;

b) Controis centered in front of the operator
permit maximum force application;

¢c) Control force greater than 30 to 40 lIbs
applied by hand or greater than 60 |Ibs
by foot is fatiguing;

d) The preferred hand and arm are generally
10% stronger than the non-preferred.

The capability which 95%, or the fifth percentile, of a population can be
expected to exert is considered the standard.

From AFSC DH 1-3, the table below shows arm strength for different angles
of elbow flexion.
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Arm Strength

) -
..} push up >N
- ‘} ~ in
—‘I ) L
- o __-l'/ )
=3
TN Tl
down =~
- ot
v
SEATED
ELBOW
FLEXION PUSH PULL up DOWN IN ouT
R L R L R L R L R L R L
180C 50 42| 52 50| 14 91 17 131 20 131 14 8
1509 42 301{ 56 42 | 18 15| 20 18 | 20 15| 15 8
1209 36 26| 42 34| 24 174} 26 21 22 20 15 10
900 36 22| 37 32} 20 17| 26 21 18 16 ] 16 10
60° 34 22| 24 26 20 151 20 18 20 17 17 12
Table 19. Arm strength for different angles of elbow flexion.

The maximum force exerted on an aircraft control stick by the right arm of male

Air Force personnel

reproduced in Table 20.
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in the sitting position, according to Morgan (Ref. 91), is



RIGHT ARM ON AIRCRAFT CONTROL STICK (POUNDS)

DISTANCE IN INCHES FROM

SRP* M1DPLANE PUSH | PULL | LEFT | RIGHT
8 (left) 12 26 24 34
4% (left) 18 28 31 31
9 0 26 34 30 23
4% (right) | 34 39 26 15
8 (right) | 37 39 26 12
12 1/2 8 (left) 18 33 23 31
8 (right) | 43 49 22 16
8 (left) 23 39 20 25
15 1/2 0 43 54 24 20
8 (right) | 53 55 24 13
8 (left) 36 45 16 22
18 3/4 0 64 56 8 15
8 (right) | 70 58 22 14
8 (left) 29 51 11 19
23 3/4 0 54 62 14 13
8 (right) | 56 58 20 12

*Forward; control

reference point.

is 13 1/2 inches above seatT

Table 20.

Maximum force exerted on an aircraft

control stick by the right arm.
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From this same reference, similar information for amount of force on an air-
craft control wheel is given in the table below.

RIGHT ARM ON AIRCRAFT CONTROL WHEEL (POUNDS)
DI STANCE
IN INCHES CONTROL
FORWARD POSITION PUSH | PULL | LEFT | RIGHT
FROM SRP*
90° (left) 32 23 23 27
45° (left) 48 40 21 24
10 3/4 0 52 44 26 20
450 (right)| 40 39 31 24
80° (right)| 19 18 21 15
13 1/4 90° (left) 32 33 26 21
90° (right)| 25 31 25 19
90° (left) { 32 42 27 19
15 3/4 0 61 66 27 27
90° (right) | 32 49 29 20
90° (left) 37 60 22 27
19 0 64 73 25 30
90° (right)| 33 61 33 22
900 (left) 82 73 21 26
23 1/4 0 105 77 20 35
90° (right) | 49 74 26 22
*Whee! grips 18 inches above SRP and 15 inches apart.

Table 21. Amount of force exerted on an aircraft control wheel.
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Since each of these tests gives the maximum force for the right arm of a male,
it must be remembered that the standard left arm, which is usually weaker,

and the possibility of female pilots for general aviation aircraft would
dictate lower maximum forces. These |limits on wheel forces need not be so
stringent if a worst case analysis shows them to be impractical, since the
pilot could use both hands if necessary. When possible, use of two hands on
the wheel should be avoided on landing, as the pilot may need his right hand
to perform other tasks. Damon (Ref. 92) gives the left rofation of the wheel
as approximately 25 ibs and right rotation as about 30 Ibs.

The maximum force that can be exerted in extension of the leg at the
hip and knee for 17 test conditions on male British civilians in the sitting
position is given in Morgan (Ref. 91).

Test Conditions Avg.
force

A B C D (Ib)
0 0 0 90 63
0 0O O 113 89
0 0 O 135 156
0 5 0 164 559
0 6 0 94 73
0 8 0 93 87
0 10 0 80 77
0 10 O 90 59
0 10 O 135 270
0 10 0 165 346
0 15 0 149 227
0 15 0 160 845
0 15 0 169 530
0 16 0 129 319
0 17 O 117 212
0 17 0 151 684
0 33 0 106 184

Table 22. Maximum force exerted in extension
of the leg at the hip and knee.

Morgan (Ref. 91) also considers the maximum force that can be exerted in exten-

sion of the ankle, corresponding to foot pedal operation (Table 23), by male
Air Force personnel for 18 test conditions.
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Test Conditions Percentiles (Ib)
A E F G 5+th
13 10 35% 37 14
13 10 38% 37 54
13 30 354 37 25
13 30 384 37 64
13 50 354 37 24
13 50 38% 37 48
13 i0 354 39 15
13 10 284 39 37
13 30 353 39 26
13 30 384 39 60
13 50 354 39 22
13 50 384 39 50
13 10 35% 41 18
13 10 38% 41 35
13 30 35% 41 32
13 30 38% 41 50
13 50 35% 41 23
13 50 28% 41 50

Table 23. Maximum force exerted in extension of the ankle.

The following table, adapted from MIL-F-8785B (Ref. 4), gives force |imits for
the elevator, ailerons, and rudder.

CONTROL MAXIMUM (1bs) MINIMUM (Ibs)

Elevator
Stick controllers 28.0 3.0
Wheel controllers 120.0 6.0
Ailerons
Stick controllers 20.0 5.5
Wheel controllers 40.0 10.5
Rudder
Pedals

for short duration 100.0 -

for steady coordinated

turns 40.0 -

Table 24. Force }imits for the elevator, ailerons, and rudder.
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Bureau of Aeronautics Report AE-61-4-|| (Ref. 93) discusses friction
forces in the control system as they affect the pilot's tracking accuracy and
recommends that friction forces for hand controls in excess of three pounds
be avoided, since they do not improve performance but do increase pilot fatigue.
At the same time, this report also recommends that no hand control require
less than two pounds of force and no pedal movement require less than seven
pounds of force for increased pilot tracking accuracy.

It is not considered necessary to set standards for switches and dials,
since they will most likely not require limit forces; however, Woodson and
Conover (Ref. 94) suggest that, for increased efficiency, rotary knob diameters
range from one-half to two inches and have a maximum resistance of one pound
or less.

Often, the force to be overcome is used as a feedback cue; thus, it is
necessary to reproduce a previously experienced force and associate with it a
certain reaction of the aircraft. The ability fo reproduce a given force, as
stated by McCormick (Ref. 95), varies with type of control and amount of force
To be exerted, as shown in the graph below. The controls tested were of the
pressure type, so various amounts of pressure could be applied with [ittle or
no displacement, making amount of displacement constant. The devices tested
were a stick, an aircraff-type wheel, and a rudder-like pedal. The difference
between the actual force reproduction and the desired reproduction was expressed
in limens (the standard deviation divided by the standard pressure). This
figure indicates that, for pressures of five pounds or less, the errors in
reproducing the desired forces are proportionally greater. For five fo ten
pounds, the errors are somewhat less, but still greater than those of forces
ten to forty pounds; pressures greater than forty pounds, over long periods of
time, are apt to cause pilot fatigue.

——o—— stick control
~ = = —— wheel control
----g---- pedal control

[
N
(-]

(=
-
7]

o
3

o
8
8

..............

Difference limen
(as proportion of pressure)

S 10 15 20 25 30 35
Pressure, pounds

Figure 80. Results of data on reproducing control forces.
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Of considerable importance in the design of any control system are the
limitations on the pilot's response time, or the speed, considering the effect
of load, at which the pilot can actuate the controls. Orlansky (Ref. 96)
reports an experiment to determine the maximum rate at which pilots can push
or pull a control stick as the load per unit displacement changes. From this
and other studies, he concludes that, for a 35-lb load, the maximum rate of
stick movement is about 50 in./sec, pushing a stick is nearly 25% faster than
pulling, and the rate of control stick motion decreases as the load on the
stick increases. The Handbook of Human Engineering Data (Ref. 97) indicates
that, as the distance for a positioning movement increases, the operator increases
his speed of movement; the time required for the response does not increase as
much as would be expected. For example, data from this handbook indicate that
the time for total movement increases 15% when the distance is doubled and 25%
if the distance is tripled. Also noted is the loss of time in making a position
movement when the pilot must change directions with The control, when about
I5% to 24% of the movement time is involved in stopping the movement in one
direction and beginning it in another direction. Continuous curved motions,
therefore, are desired over motions with sharp directional changes.

The pilot's response time is the sum of his reaction time and his movement
time. Reaction time, as defined in AFSC DH |-3 (Ref. 90), is the period between
the onset of the signal to respond and the beginning of the actual response.
Among the factors affecting reaction time are type of signal, motion unit
responding, precision of the response, age and sex of the responder, preparation
for the response, practice for complex responses, and ambient conditions.

AFSC DH [-3 reports that hand response is 20% faster than foot response, and
the preferred limb is about three percent faster than the non-preferred.

The Handbook of Human Engineering Data (Ref. 97) gives mean reaction times for
simple movements ranging from about 0.22 sec to 0.3 sec. The conclusion from
these data is that the auditory system reacts faster than the visual system.

The foregoing information has been included fto indicate the anthropological
basis for satisfactory handling: the actuation force levels, limb displace-
ments, and phase relationships with which a pilot is comfortable. It is then
the designer's task fo provide satisfactory aircraft response using these
anthropological data to describe the input to the aircraft control system. The
reader will note that the primary emphasis of this report is on insuring satis-
factory aircraft response. While many future light aircraft will retain en-
tTirely manual confrol systems which require the designer to make certain com-
promises between what forces, displacements, efc. he would like to present the
pilot with the responses that these inputs can produce, some future light air-
craft will employ artificial feel systems which can present the pilot with
what he would like while at the same time providing satisfactory responses.
When the system is capable of optimizing both these facets it then becomes
important to insure that anthropological requirements are considered in detail.
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DESIGN FOR DESIRABLE RIDING QUALITIES

In the past the primary design and specification efforts for aircraft
have rightly been concerned with insuring safe operation and successful com-
pletion of the mission. Progress in these areas now appears to have reached
the point that some attention may be directed toward providing the pilot with
a comfortable ride as well. A significant portion of what the pilot describes
as riding qualities depends upon the design of his seat and other restraints.
Noise-induced vibrations also contribute to the piloft's gross impression of
the ride. For the present discussion, however, consideration will be re-
stricted to those aspects of ride which can be altered by the aerodynamic de-
sign of the aircraft. Thus the concern will be desirable values of linear
and angular accelerations associated with the airframe dynamics.

As stated earlier it is these changes in velocity which the pilot feels
as imposed forces on his body and which he interprets as major contributors
To the riding qualities of his aircraft. Unfortunately, no substantive dis-
cussion of the relation between the magnitude and frequency of these acceler-
ations and the acceptability of the ride was found in the literature. The
foilowing arguments, however, lead fo criteria which may find utility.

There are five characteristic motions associated with rigid aircraft.
The spiral mode has a very long time constant and is aperiodic. It is there-
fore unlikely to induce significant accelerations in normal operation or to
occur at a rate which will be uncomfortable. The roll mode, also aperiodic,
is very heavily damped and is generally not sensed by the pilot. This leaves
the three oscillatory modes as the source of ride discomforts.

Consider first the longitudinal case. From the second equation of A-34
it is evident that to a first order
a, = W - Uog = Zyu + Zw + ZGGaG
The notation 8z is used here fo indicate an effective aerodynamic input,
similar to a flap on elevator deflection, due to a vertical gust, wW. Thus,

clE|

=(SG

Since this form is similar to that resulting from a simple control input it
may be used fTo describe pilot induced oscillations as well as gust induced
oscillations. Only the value of Z@G and 8g must be changed. Following this
tack, then

az Zuu

W
-SE='SE—+ZW3E+266 .

This may be evaluated fthrough the use of Equations C-4 and C-7.
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The resulting Bode plot has two well-defined peaks corresponding to the
Phugoid mode and the short period mode. Since the peak accelerations are
really the values of interest, it is helpful to develop approximate forms
for the amplitude of a,/8g corresponding to these two peaks. The numerator
of the transfer function contains four zeros: one at the origin, one just
to the right of it, one far to the right of the origin and one far to the
left of the origin. The latter two have no influence on the phu90|d mode
and very little on the short period mode.

The denominator has the ftwo second order factors corresponding to the
phugoid and short period modes. It will be recalled that the phugoid factor

52 27 s
DR

P p

reduces fto 2gp when w = wp, and can be approximated by wnspz/wn when
w = wngp. Ihe short perioa factor is about |.0 when w = wp and 2ggp when
For these two conditions the transfer function becomes

w = wgp.
K Talm 2
2. "
GE 2cp
2 2
a K Talmn K Talwn
_Z': Sp =
GE Nn 2 ZCp
s
—E;réé— (¢ )
p

When the gain and time constant, Tal, are evaluated as given by Ref. 17 one
has

2
a ou b L Cmg_ @y
zZ _ o (o E) p
== - t
6E 4g W/S Cmu z
where the damping ratio refers to the mode being considered. In terms of the

gust velocity, w, this can be written

=13 C Cnm
_ WpUO La 66) b
z  4g W/s C,, z
Q
The quantities in parentheses are relatively constant with speed in the

range over which light aircraft operate. Since

a

w_ oW = constant
n_n

p sp
and

n

sp
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e

then

a, " w Uo/c

Lsp Is approximately independent of speed while zp increases with Uoz.

Note that increasing the wing loading is favorable for improved ride
while reducing oscillatory damping results in a poorer ride. Two additional
comments are in order regarding this relation: (I) W here is the amplitude
of an oscillatory gust having a frequency of either wnp or wngp. az will be
less for oscillatory gusts of any other frequency. (2) The equations from
which the relation was derived assume no steady pitching velocity. Hence
one cannot find the value of az/8g in a steady pull-up from this relation.

Typically, the damping of the phugoid mode is about 1/10 that of the
short period mode while its frequency is about [/20 that of the short period
mode. This means that the accelerations associated with The phugoid mode
can be Ten times as large as those associated with the short period mode. On
the other hand, since desirable values of short period mode frequency range
between about | and 6 radians/sec for effective handling, the period of time
required for the phugoid acceleration to build up to ifs peak is on the order
of 5 to 30 seconds. During this period of Time the pilot has the opportunity
To take corrective action. Autopilots also damp Tthis motion effectively. In
any case, a pilot is not likely to associate phugoid induced accelerations
with ride but rather with handling. |t is evident, however, that both ride
and handling and therefore safety can be improved significantly by increasing
the damping.

The phugoid mode is also accompanied by a longitudinal acceleration which
has a magnitude about 1/10 to 1/6 as large as az. Since either the pilot or
an autopilot will atfempt to suppress az at wnp, it seems reasonable to ignore
ax. Note that variations in ax are essentially zero at wngp. Other than pos-
sible nausea resulting from the long period swaying motion and the pilot fa-
tigue incurred in controlling it, the phugoid oscillation can probably be ig-

nored. |t appears therefore that one may take the following as the ride criteria

in the x-z plane:

C Cm w
_ La GG)
z " 4g W/s\" C z

m
a sP

w 3
WpUO

a

w between | and 6 rad/sec.
Nsp

A similar argument can be made for the lateral acceleration with the result
that

3
?l = K pSUO w_d
GR ay 2W 2;d

*¥  The anthropological basis for suitable values is treated later.
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where 2

(C,c C -Cy. C C,)
) Y
« - o yB n. GR nB Qp
ay (Cz Cn —Cz Cn )[Ch (Cy c. -C Cn )+ Cn (C Cz —Cy CQ )
R

B 'r rs r Ygfs, Y. g r Vs, “8 Yg %8
In terms of a lateral gust with oscillation amplitude v, this becomes

R R R

2
a =v K ~ SEEQ—-SQ
y ay 4w %4
where Kg,,” indicates that Cnsg and Cysr have been replaced by Cpgg and Cyggs-
wg is diXec+ly proportional to Up while g4 is approximately constant. The
criteria for side acceleration are, therefore,

_ pSU_* uy
a =v K 7 —_——
y ay 4w &4
Wy between | and 6 rad/sec.

with the maximum value for ay to be specified. ay of course refers only fo per-
Tubations from straight line flight.

Additional components must be added to the accelerations to account for
steady rotation. For example, in a steady turn with & = 0 the accelerometer
indications are

A
Y

UORO - g sin ¢o

AZ - QOUO

If the turn is coordinated,

R = g—-sin ¢,

o U o
o
Ay =0 R
1-cos2¢
Q= ,
o} U cos¢O
and
A =-9
z cos ¢O
The accelerations felt by the pilot are those values which differ from A; = g
and A, = 0. Thus in a coordinated turn the comfort limit is determined by

4

A, =g (=1 -1)

cos
¢O
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McFarland (Ref. 98) suggests a comfort limit of |0 f'l"/sec2 for linear
accelerations. According fto this criterion coordinated turns in clear air
should not exceed bank angles of 40°. |f the air is turbulent the allowable
bank angle apparently would be reduced.

While a pllot may tolerate these acceleration levels during turning
flight because they are unavoidable and are imposed for relatively short
periods of time, it does not appear reasonable that a 180 Ib. pilot would
find nearly 60 |bs. of force applied sinusoidally along any of his principal
axes for an extended period of time comfortable. I+ is also reasonable to
expect that because of his construction, a pilot will be more sensitive to
lateral forces than to vertical forces. While no substantive information is
available to support the author's qualitative experience, it is suggested
that because of these considerations

1’

a

, 4 fT/sec2

and

12

a

Y
may be more suitable acceleration limits for the dutch roll and short period
motions than that offered by McFariand. Since such accelerations are substan-
tially below those imposed by steady turns, the pilot probably will not be as
sensitive to them during turns as at other times. The 40° bank angle limit
may therefore be acceptable during furns, provided the ay and az limits quoted
above are met during straight-line flight.

2 fT/secZ

interestingly enough, McFarland suggests a limit of 5° bank angle at low
altitudes and 25° bank angle at high altitudes for tilt angles with which
passengers would be comfortable. |f the 25° tilt occurred in a steady turn,
it would correspond to a 3.2 ft/sec? acceleration increment along the z-
direction.

McFarland was also concerned with tolerable levels of angular acceleration.
However, i1 can be shown that the gain of

w 2
o wee_SP
S Kg T

E sp

@

is about 107> +imes the gain of

]
€

2.« Isp_
GE a z
zZ “sp
It appears, therefore, that angular accelerations are of no significance if
az and ay are maintained at the levels indicated.

Other data of interest to the riding quality discussion are presented in
Figure 8l. This shows a summary of pilot comments on the short period mode
handling qualities of a jet fighter. Note that good handling characteristics
will virtually insure good riding qualities according to the criteria developed
here. 191
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Figure 8l. Results of pilot opinion ratings on the
handling qualities of a jet fighter (Ref. 99).

One final comment regarding the riding qualities of an aircraft in gusty
air may be made. Rigid aircraft exhibit fairly rapid attenuation of normal
acceleration response for w>wgp. For example, at frequencies in the range
where human internal organ resonances are excited (~42 rad/sec), az is less
than 10% as much as at wsp for a given amplitude oscillatory gust. Only if
the aircraft has a poorily damped fuselage bending mode or wing bending mode
at these frequencies would one expect there to be significant structural
shake resulting in pilot discomfort.
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THE

EFFECT OF VARIATIONS IN STABILITY DERIVATIVES
ON THE
MOTIONS OF A TYPICAL LIGHT AIRCRAFT
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INTRODUCTION

Specification of aircraft geometry, mass distribution, and control system
characteristics to yield given riding and handling qualities is unfortunately
an interative procedure and therefore a laborious process. One can construct
the necessary transfer functions, but there is no unique method to assign
numerical values to particular stability derivatives which assumes that these
values will bear the often necessary interreiation with one another nor
correspond to physically realizable geometry or mass distributions. The
approach employed here proceeded through several phases. Ihe first was to
take an existing light aircraft, in this case a Cessna 182", compute its
stability derivatives, substitute in the transfer function, and extract the
roots. The derivatives were then varied individually to determine the sen-
sitivity of the locus of roots to changes in that particular parameter.

This procedure also permifs one to determine approximately the range of values
which the particular derivative may have for satisfactory performance. It is
only an approximate range because some derivatives cannot physically be

varied independently of others. This aspect of the procedure and i1fs signi-
ficance will become clear in the subsequent discussion. Once reasonable
values are obtained for the desirable values of the stability derivatives,
particularly those which have a strong effect on movement of the roots, one
then proceeds to determine the geometric and mass distributions which will
produce these values and are at the same time self-consistent. This phase
will be elaborated later.

In preparing the figures for the stability derivative variation, the
derivatives chosen for examination were generally within gius or minus one
order of magnitude of those calculated for the Cessna 182", at cruilse.
Included with the figures for the locus of roots due to a variation of a
single stability derivative are tables whlch indicate how the gain of each
particular transfer function varies as a function of the stability derivative.
Table 16 through Table 31 and Table 35 through Table 46 are tabulations of
the numerator roots for the longitudinal and lateral stability derivative
variations, respectively. Included at the end of this section are a series
of six Bode plots (Figures 90 through 95) illustrating the motions of the
aircraft in response to control surface step inputs. The numerical values
used to prepare these graphs are those for a Cessna 182 at cruise.

* The principal geometric dimensions for the Cessha 182 are shown in

Figures 61a and 61b. The longitudinal and lateral derivatives used for
the analysis are tabulated in Tables 1453 and 14b.

¥%¥  The values were calculated by the methods presented in earlier sections
of this report. They compare favorably with those calculated by Cessna
according to a personal communication.
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Cr 0.309
Cp 0.0311
Cm 0.0
Ct 0.0
CLy 0.0 QVB -0.3086
Cpy, 0.0 CQB -0.089
Cmy, 0.0 Cng 0.06455
CTy 0.0 Cyp -0.0373
CLy 4.61/rad. Cﬁp -0.4708
CDa 0.126/rad. Cnp -0.0292
Crng -0.885/rad. Cy, 0.2103
Crg, 1.74/rad. Czr 0.0958
Cpg 0.0 Cnr -0.09924
Cmg, -5.24/rad. CYGR 0.187
CLq 3.9/rad. CRGR 0.0147
CDq 0.0 CnGR -0.0658
cmq -12.43/rad. o 0.00205 slugs/ft.3
CLGE 0.427/rad. U 219.0 ft./sec.
CDsg 0.0596/rad. Y 0°
Cms -1.28/rad.
3 Table 25b. Lateral stability
e 0.00205 slugs/ft. derivatives (per radian).
U 219.0 ft./sec.
Y 0°
Table 25a. Longitudinal stability

derivatives.
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LONGITUDINAL VARIATIONS

Figures 83a and 83b show the effect of C| variations on the longitudinal
dynamics. It will be seen that there is little change in the location of the
short period roots for all usual values of C{. The phugoid mode, however,
is significantly altered by changes in C_. At high CL's, both the frequency
and damping ratio are increased. At C_'s near zero, the roots become real
with one going unstable. Thus one would expect difficulty in maintaining
speed stabilifty in a shallow, high-speed dive.

The effort to provide low drag for good performance leads to a neutrally
damped phugoid, as pointed out in Figures 84a and 84b. Stability augmentation
is therefore required if one is tc obtain both low (W0) drag and good riding
and handling (low work load) qualities.

Cm and CT must be considered simultaneously because Cpy provides the
aerodynamic moment to counter the moment produced by the thrust. In gliding
flight, Cm = 0. Figures 85a and 86a show that the short period mode is not
affected by changes in either Cn or CT. Figures 85b and 86b show the effect
on the phugoid mode of altering Cm and Ct respectively. Adding power will
make CT positive and Cm negative. Reference to the figures will show that
making Cm negative will cause the phugoid roots to split along the real axis
with one going unstable. On the other hand making CT positive results in an
unstable phugoid oscillation. Thus while it is not possible fo conclude from
These figures alone the detailed airplane behavior when power is added (because
Cm and Ct cannot be varied independently in flight but only through design
changes such as the location of the engine thrust line), it is obvious that
the application of power is destabilizing.

Figures 87a and 87b indicate the variations in longitudinal dynamics
produced by changing ClLy. Increasing CL, is seen fo reduce the frequency and
to increase the damping of the short period mode. A sufficiently large value
of Clg suggest aperiodic short period roots. The time for the phugoid to
damp to half amplitude is little affected by changing Clgy (Figure 87b), but
the oscillation frequency is a direct function of ClLy. All usual values of
CLy are therefore acceptable for satisfactory aircraft riding qualities.

From Figure 88a, it is seen that the short period mode is virtuallvy
insensitive to moderate changes in CDg- Increasing values of Cpy destabilizes
the phugoid mode (Figure 88b). Instability is most likely fo occur in the
approach configuration where Cpy is greatest. The maximum acceptable value
is about twice the value calculated for the Cessna 182.

Figures 89a and 89b show the movement of the short period and phugoid
roots respectively due to a variation in Cmy. For most light airplanes as
usually loaded, Cmy will probably lie between -.3 and -1.5. In this range,
the time to damp the short period oscillation to half-amplitude is independent
of the value of Cmg, while the frequency increases as Cmg assumes greater
negative values. Cmy with greater negative values than -1.5 gives short
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period mode frequencies higher than the 5-6 rad/sec |limit desired. Values
of Cmg greater thar about -0.23 cause the short period oscillation to disappear
and become two aperiodic modes.

Reasonable variations in Cpy (Figure 89b) also have little effect on the
time to damp the phugoid oscillation. The phugoid frequency increases as
Cmg becomes more negative, while values more than about -0.05 cause the
phugoid to degenerate into aperiodic motions. It is seen ftherefore that the
proper value of Cmg is usually determined by requirements for acceptable short
period mode characteristics. A notable exception may be mentioned, however,
A recent paper (Ref. 116) discussed resulfs obtained with a light aircraft
modified to evaluate the pilot acceptance of various short period mode
damping ratios. The damping ratio was made unity (i.e. both roots lie on the
negative real axis) by increasing Cmg (making it less negative). One would
expect that the pilot would be pleased with this condition since it means
that the aircraft would track rapid elevator commands without oscillating.
Instead, the pilot found it quite objectionable, saying that it was
difficult o maintain airspeed stability. The paper therefore recommends
that damping ratios approaching unity not be used. The falacy in the
argument is immediately obvious when one examines the effects of near zero
Cmg, values on the phugoid mode. The roots become aperiocdic with one going
unstable as Cpg increases. Of course the pilot would find this undesirable.
It is therefore important that unity damping ratio for the short period mode
not be achieved by increasing Cmg, alone. As discussed below the most
satisfactory single means of obtaining this behavior (unity damping ratio) is
To make Cmq more negative. Increasing the tail length is Tthe most effective
geometric change one can make to accomplish this increase is damping.
Because of the very significant lengthening required, however, it is desirable
to combine this with small rearward shift in operating c.g. (effectively a
small increase in Cpg).

Figures 90a, 90b, 91a, and 91b show that the roots are relatively
insensitive fo changes in CLg and Cpg. Changing CLg by an order of magnitude
from its original value moves the roots only slightly for both the short
period and phugoid modes. Cpg is usually considered to be zero for most
light aircraft. |If a value were calculated, it would be at least an order
of magnitude smalter than CLg, at least as small as .177. Thus, for all
normal values of Cpg, both phugoid and short period roots remain in virtually
the same location.

Figures 92a and 92b indicate that Cpg is quite important in the short
period mode buf unimportant in the phugoid mode. More negative values of
Cm@& decrease the frequencies and increase the damping. High negative values
can even lead to two highly damped aperiodic modes. Values greater than zero
should be avoided. In the normal range of values, an error in Cmg of 20%
could cause a 5% error in the calculated frequency of oscillation. The phugoid
mode roots are relatively unaffected, even when Cmg is changed by an order of
magnitude.

Figures 93a, 93b, 94a, and 94b indicate that both the short period mode
and the phugoid mode are relatively insensitive to variations in CLg and Cpg-
I+ is noteworthy that a value of CLq = 0 would give almost the same character-
istics as the value calculated. 199



Cmg is quite important to the frequency and damping of the short period
mode but relatively unimportant to those of the phugoid mode. The short
period roots for various values of Cmg are similar in behaviour to the roots
for various values of Cmg. (see above). As Cmgq becomes more negative, the
frequency decreases and the damping increases for the short period mode
(Figure 95a). For the normal range of Cmg values, the damping is more sensi-
tive to changes in Cypy than the frequency of oscillation. For very negative
values of Cmg, aperiogic motions are achieved. Variations of Cmg have almost
no effect on the phugoid damping. The frequency of the phugoid mode decreases
as Cmq becomes more negafive, as can be observed from Figure 95b. Cmq, of
course, is always negative.

The above results are discussed below from the viewpoint of acceptable
riding qualities, since the proper range of the more important stability
derivatives is significant in achieving these qualities. The important deri-
vatives which affect the short period mode appear to be ClLy, Cmg, Cmg, and
Cmg- |T would be desirable to have the short period damp fo one-half amplitude
in one second or less, with a damping ratio greater than 0.6 and 1o have the
frequency less than five radians per second for acceptable riding qualities
and less than four radians per second for good riding qualities. Any
reasonable value of Cy will provide a damping ratio greater than 0.6, a
frequehcy less than 4.25 rad/sec and a time for damping to one-half amplitude
of less than 0.25 seconds. Cmg values between -.23 and -1.0 give acceptable
short period riding qualities with a frequency of less than 5.0 rad/sec and
a damping ratio greater than 0.6. It is desirable to have Cmg !ie between
-4.0 and -17.0; the more negative the value, the lower the frequency and
higher the damping. Cmq should have values befween -6.0 and -29.0 for good
riding qualities.

The frequency and damping criteria mentioned above probably should be
regarded as applying only fo aircraft without artificial stability augmenta-
tion. The geometric changes necessary to improve the riding and handling
qualities further (i.e. to obtain unity damping ratio for an undamped natural
frequency of 6 radians per second) sufficiently degrade aircraft performance
and payload capacity as to make these changes unattractive. Improvements in
riding and handling qualities, however, can be obtained with stability augmen-
tation without sacrificing either performance or payload.

The phugoid mode must also be considered when discussing riding qualifies.
This mode should have a damping ratio of at least 0.04, with a maximum fre-
quency of about 0.3 rad/sec. |f the period is over three fo four seconds,
it can be tracked by the pilot although the pilot work load will be high.
The phugoid frequency is really not very critical as long as it does not
approach the short period range. The derivatives Cm and CT contribute only
to the phugoid mode and should be considered together. More positive values
of CT yield unstable phugoid roots; for the particular airplane analyzed,
Cn becomes more negative as CT became more positive which leads to an increase
in phugoid frequency and a decrease in damping. C| has the most effect on
the frequency of the phugoid mode, while CD mainly affects damping. For
the normal range of C| values (.1-1.5), the frequencies may take on values
as high as 0.3 to 0.4 rad/sec; however, as the frequency increases, the
damping also increases. The larger the value of Cp, the beftter the riding
qualities; however, performance requirements must dictate the value of Cp.
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Values of Cpy between -0.01 and -2.5 appear to give satisfactory phugoid
response by affecting the frequency while keeping the damping essentiaily
constant. Cmg has a small effect on the phugoid frequency, but values
between 0.0 and ~-30 give desirable phugoid riding qualities.

In the above discussion, a range of desirable or acceptable values of
the important stability derivatives has been given for the phugoid and short
period riding qualities. |t should be emphasized that Tthe derivatives have
been discussed as if they were independent of the other derivatives, while
in reality they are not. |In the table below, the most important longitudinal
stability derivatives are given with the range of values which should resul+t

in the desirable handling qualities indicated above. It should be remembered
that even though values of Cmg between 0.0 and -30.0 appear acceptable, if
The values are very near zero then it will probably be impossible to obtain
acceptable values for other stability derivatives.
Stability Derivative Acceptable Range

Cp 0.03* to 1.0

Cmg, -0.23 to -1.0

Cimg, -4.0 to -17.0

Cmq 0.0 to -30.0

Table 26. Acceptable range for longitudinal stability derivatives.

Since the longitudinal stability derivatives cannot really be varied
independently, it was felt that the movement of the roots due to the changes
in the airplane's geometry would be more informative than just a variation

of the longitudinal stability derivatives. |In the case of longitudinal
dynamics, The movement of the roots was calculated for various c.g. loca-
tions, horizontal tail areas, tail lengths, and tail efficiencies. |t should

be noted that fthese variations were made without changing the original

inertia characteristics of the airplane. As an example of how inertia changes
would effect the geometfric variations, the short period plot of %t indicates
the roots with and without the inertia changes. |t should also be pointed

out that the tail area was varied in such a way that the tail aspect ratio

was held constant. The figures and tables below can be used to track the

roots.

The phugoid and short period frequencies decreased as the c.g. was moved
aft, until aperiodic modes were obtained for both (Figure 96 and Table 44).
The short period damping decreased and the phugoid damping remained almost
constant as the c.g. moved aft up to 42.5% m.a.c. The short period roots
were aperiodic with the c.g. at 42.5% m.a.c., while with the c.g. at 45%

*Lower values of Cp will require artificial damping to meet the phugoid

damping criterion.
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m.a.c., the phugoid roots were aperiodic with one unstable root. For a
c.g. location at 47.5%, there was a phugoid-short period coupling as well
as one very stable short period root and an unstable phugoid root.

The variations in horizontal tail area with tail aspect ratio held
constant showed that the short period damping increased and the frequency
decreased for tail areas greater than that of the Cessna 182. Tail areas less
than the original area gave lower frequencies and lower short period damping
(Figure 97a). The phugoid damping was virtually unaffected by the variations
in tail area while the natural frequency showed only small changes.

For the variation in tail length without inertia effects, the short
period damping increased and The frequency decreased for fail lengths
greater than that of the Cessna 182 (Figure 98a). Tail lengths less than the
original length gave lower frequencies with lower short period damping. Two
aperiodic roots are obtained for tail lengths slightly below 45% of the
original length. The frajectory of the short period roots considering
inertia changes was similar to tThat calcutlated without considering inertia
changes but exhibited higher damping ratios for longer tail lengths and
lower damping ratios for shorter tail lengths. The phugoid damping was
almost unaffected by variation in tail length from 200% to 45% of the original
value, as seen in Figure 98b. The frequency did decrease as tail length
decreased, but no unreasonable frequencies were obtained for the range of
tail length variations. As may be expected, the variation of tail efficiency,
Ng, gave results similar to those for ftail length variation (Figures 99a
and 99b).
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LATERAL VARIATIONS

Figure 100 shows the effect of Cyg variations on lateral dynamics. In
Figure 100a, the Dutch Roll natural frequency appears nearly unaffected by
changes in Cyg; however, Dutch Roll damping increases slowly for more negative
values of Cyg. For practical airframe configurations, Cyg is never positive.
Figures 100b and 100c show the nearly negligible effect of Cyg on the spiral
and roll modes, respectively. 1n general, the three modes seem relatively
insensitive to changes in Cyg.

The effect of Cgg variation on the Dutch Roll mode is seen in Figure
101a, where large negative values of Cgp decrease the damping and increase the
natural frequency, and positive values improve damping and decrease the
natural frequency; however, for typical values of Cgg, the Dutch Roll mode
is only slightly affected. The spiral mode, as pointed out in Figure 101b,
is more stable for large negative values of Cgg but less stable for both
small negative values and any positive values. Thus an aircraft may be made
more spirally stable by increasing the wing dihedral; however, there is a
[imit to tThe amount of dihedral because of the adverse effect of large nega-
tive values of Cgg on the Dutfch Roll mode. The roll mode (Figure 101c) is
also more stable for larger negative values of Cgg, but substantial changes
are necessary for the effect to be very noticeable.

The Dutch Roil frequency is highly sensitive to changes in Cng, Figure
102a, with large positive values causing very high frequencies; smal! negative
values, which are possible for airframes with small vertical fails, produce
an unstable system. Dutch Roll damping is relatively unaffected by changes
in Cng. The spiral mode (Figure 102b) is moderately sensitive to changes in
Cng; it becomes more stable as Cphg grows smaller and becomes negative. The
roll mode (Figure 102¢c) is unaffected by changes in CnB'

Variation in Cyy, has no effect on any of the lateral modes, as indicated
in Figures 103a, 103B, and 103c.

Figure 104a shows that the Dutch Roll mode is only slightly affected by
variation in Cgp. The spiral mode in Figure 104b is somewhat more sensitive;
less negative values of Cg, increase the stability; positive values of Cg
are not physically possible. Obviously, the roll mode in Figure 104c is
highly sensitive fo changes in Cgp, The damping-in-roll derivative, as it
becomes more stable for increasingly negative values of Cg,. For very small
negative values and for positive values, the roll and spiral modes couple
to produce the roll-spiral oscillatory mode. MIL-F-8785B, (Ref. 4), speci-
fically prohibits this.

Figure 105a shows the effect on the Dutch Rell mode of variations in Cnp-
Large negative values cause an increase in natural frequency, whereas positive
values decrease the frequency and damping until fthe system becomes unstable.
The spiral mode (Figure 105b) is virtually unaffected by changes in Cnp, and
the roll mode (Figure 105c) becomes less stable for large. negative values
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Variation in Cy, has almost no effect on any of the lateral modes, as
Figures 106a, 106b, and 106c indicate.

Larger positive values of Cg. (Figure 107a) increase the Dutch Rol |
damping, but have little effect on the natural frequency. More positive
values, though, seem to give an unstable spiral mode (Figure 107b) and a less
stable roll mode (Figure 107c).

Figure 108 shows the effect of variations in Cp. on all three modes.
For larger negative values of Cpp, the Dutch Roll becomes two aperiodic modes,
wiTh one root moving toward the roll mode root and another root approaching
the spiral root. These roots meet and, at one point, two oscillatory modes
exist. This sifuation, however, may not be physically obtainable. For less
negative values of Cnr, the Dutch Roll damping decreases, but the rol! and
spiral modes are little affected.

The previous results are examined below from the viewpoint of acceptable
riding qualities. Consideration is given specifically To tThe allowable range
of several important stability derivatives governing these qualities. Two
stability derivatives, Cng and Cnr, seem to have the most effect on the Dutch
Roll mode. Using a minimum Zgq (Dutch Roll damping ratio) of the larger of
.19 and .35/wng and limiting the natural frequency to a range from one radian
per second fo about five radians per second, a range of values for these
two derivatives was determined. Cng, which determines the natural frequency,
should lie between about .01 and about .15 per radian. Also Cnp, the yaw-
damping derivative, was found to have a minimum value of -.45 per radian
to satisfy the requirement for minimum wng and a maximum value of -.09 per
radian fo give a damping ratio of at least .19.

The stability derivative Cgp seems to have the most effect on the spiral
mode. For best riding qualities, at least a neutrally stable spiral mode Is
desired. To attain this, a value of CgB more negative than -.05 is needed.
This may be accomplished, physically, by increasing the amount of aircraft
wing dihedral, but large negative values of Cop adversely affect the Dutch
Roll mode by increasing the frequency and decreasing the damping, thus, a
Cgg of about -0.4 per radian is considered the most negative value permissible.

The stability of the roll mode is determined primarily by Cgy, the
damping-in-roll derivative. For a 1/TR less than about 0.7, whicﬁ seems
desirable for easy handling, the value of Cgp must be less than -.04 per
radian; however, too large a negative value of Cg, may cause the aircraft
to react sluggishly to the pilot's commands, and one of the requirements
for easy maneuverability is That the aircraft be able to roll a certain
number of degrees in a finite amount of time,

The following table lists the important lateral stability derivatives
with Ttheir suggested range of values for desirable handling qualities.
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Stability Derivatives Acceptable Range
- (per radian)
CnB .01 to .15
Cnp ~0.45 to -0.09
Cog -0.40 to -0.05
Cgp less than -0.04

Table 27. Acceptable range for lateral stability derivatives.,

Since the lateral stability derivatives cannot physically be varied
independently, it seems necessary to discuss the movement of the roots of the
characteristic equation due to a variation of the airplane's geometry. For
the lateral dynamics case, the length fo the vertical tail, &,, the area of
the vertical +ail, Sy, the wing dihedral angle, and a combination of vertical
tail area and wing dihedral were varied.

The effect on the Dutch Rol! (Figure 109a) of increasing &y is to in-
crease both frequency and damping of this mode. The reason for this can be
gathered by examining the effect on Dutch Roll characteristics of CnB and
Chy variations. Increasing &y makes Cng more positive. This has a direct
influence on the frequency of the Dutch Roll. Increasing %2y also makes
Cnr more negative. For small increases in the magnitude of Cpp, the damping
of the Dutfch Roll Is increased but the period is unaffected. Finally, for
large negative values of Cp,, the period of the Dutch Roll increases and the
damping also increases. For &, up to 150% of the original, Cnhp seems to
dominate as the frequency rises quite rapidly, but for &, greater than 150%
the frequency levels off and the system becomes more highly damped as Cnfp
becomes dominant. For decreasing Ly, both the frequency and damping decrease
until, at about 35% of the original tail length, the system becomes unstable.
The spiral mode (Figure 109b) becomes more stable for both increasing and
decreasing fy. This is possible since in the expression, Cg CnB/(CgB Chr -
Cng Cgr)Cyp, which governs the spiral root, Cnp, C”B' and Cg, all change
with Ly variation. The roll mode (Figure 109c) is unaffected by changes in
vertical tail length since Cgp is not dependent on %y. The moment of inertia
I,z was held constant for one set of 2y variations and allowed to change for
the second set of &, variations. The results of both are shown in Figure 109
and inertia changes produce only small deflections in the curves with the
general trends remaining the same.

Figure 110a shows the effect of vertical tail area variation on the
Dutch Roil mode. Increasing Sy gives both a higher frequency and a slightly
more damped system since Cng and Cp, are again substantially affected by
changes in vertical tail area. (Cp, becomes less negative as Sy decreases;
for the same conditions Cphg may go through zero and become negative) with a
value of about 48% of the original tail area, the system becomes unstable.
The spiral mode (Figure 110b) becomes more stable for decreasing vertical
tail area, since this produces small positive or even negative values of Cng
(Figure 102b). The roll mode (Figure 110c) remains unaffected since Cgp is
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only slightly affected by changes in vertical tail area.

The effect of variations in wing dihedral on the Dutch Roll mode is modest

as shown in Figure 111a. However, the spiral mode (Figure 111b) is heavily
dependent on wing dihedral, since this determines the vaiue of CgB, the
"effective dihedral" derivative. Positive dihedral angle gives a more stable
spiral mode and negative dihedral causes the mode to become unstable. The
roll mode (Figure 111c) is essentially constant for wing dihedral variation.

The combination of changing both vertical taill area and wing dihedral is
shown in Figure 112. The Dutch Roll mode (Figure 112a) is the same as that
for Sy variation alone since dihedral angle has little effect on this mode.
However, the spiral mode (Figure 112b), which previously became less stable
for increasing Sy, now can be made more stable by an increase in the dihedral
angle. Thus the Dutch Roll and spiral modes may both be improved by
simultaneously increasing vertical tail area and dihedral angle. The
roll mode (Figure 112c) remains unaffected.
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Short Period Mode Roots for the C; Variation
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Phugoid Mode Roots for the CLVariation
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Short Period Mode Roots for cDVariation
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Phugold Mode Roots for the Cp Variation
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Short Period Mode Roots for the Cp, Variation
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Phugoid Mode Roots for the Cy, Variation
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[eReNoNoNoNoNe]

-0.00400 0.
~-0.00936 0.
-0.01257 %0,
-0.01472 0.
-0.01793 0.
-0.02115 10.
-0.02544 30,

~-0.01557
-0.03078
-0.03993
-0.04605
-0.05524
-0.06445
-0.07677

[cNoNoNoloNoNe]
eNoNoNeoNoNoNe]

Table 30. Numerator

u

Ao

14062
17668
19507
20640
22227
23704
25535

REAL

.93156
.93156
.93156
.93156
.93156
.93156
.93156

.05353
.04944
.04696
.04529
.04277
.04022
.03679

roots for Cm variations.

[l e e W0 N0 We We)

-195.
.42405
-195.
~-195.
.40690
~-195.
.39189

-195

-195

-195

.84425
.84425
.84425
.84425
.84425
.84425
.84425

43477

41762
41333

40047
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Short Period Mode Roots for the Ct Variation

Im
4
-l 5
0.0
~5 0.5
4a
<3
-~ 2
-1
i |1 (Y i L L 1
L4 L] 1 ] L] L] | L]
-5 -4 -3 -2 -1 1 2
-F_l
Ct Values listed
beside roots L 2
- —3
+-4
=5 0.5
0.0
+ -5

Figure 86a
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Phugoid Mode Roots for the Cy Variation

-25

Ct Values listed

beside roots

=20

[o14]
+=-20

Figure 86b

.35




STABILITY
DERIVATIVE

11
loNoNoNoNe No]
U NONW

218

-0

-0
0.
0
0
0

VAR NONW

U NON LU

REAL

-7

-7.
.68330
.68330

-7

-7.
-7.

-0.
-0.
-0.
.07997
. 17466
. 17346

-0

Table

.68330

68330

68330
68330

40952
10940
01472

.52196
.23624
-0.
. 14399
.33390
.42882

04605

31.

NUMERATOR ROOTS

u

IMAGINARY

OO OO0
QO OO0 O

Ao

0.0
$0.17076
+0.20640
+0.19522
+0.12527

0.0

OO OO0 O
QOO OOOCOo

REAL

-2

.93156
.93156
.93156
.93156
.93156
.93156

.09450

. 26937

.04256
-2.
-2.
-2.
-2.
-2.

04437
04529
04605
04669
04697

Numerator roots for CT variations.

6.84425
6.84425,
6.84425
6.84425
6.84425
6.84425

-195.41718
-195.41487
-195.41333
-195.41180
-195.41027
-195.40950




Short Period Mode Roots for the Cl_aVariation

20.0

]
00~
1

~

I -
*

1

(1)

1
»T
!

w

U

N

|

=

S

+-1

20.0

CL Values listed
(s 4
beside roots

Figure 87a
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Phugoid Mode Roots for the CL, Variation

Im
Lo
=400 +.25
00
+.20
4,608
+.15
200
+10
T05
t I ; — Re
-10 -05 .05 10
-~ =05
CL. Values listed Lo
beside roots
20.0
‘Lﬂls
4608
00 + =20
-d,0 -‘r—.25
+=30
Pigure 87b
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NUMERATOR ROOTS

u

STABILITY

DERIVATIVE REAL IMAG I NARY REAL REAL

- 4.0 3.85691 *4.,24363 -12.44010
0.0 0.48723 0.0 4.46793 -11.56084
4,608 6.84425 0.0 ~-7.68330 - 7.93156
8.0 - 8.98685 +4,10263 7.60946
12.0 -10.23230 +5.68619 8.22106
i5.0 -11.10984 +6.45655 8.56664
20.0 -12.50753 +7.33119 9.01289

Ao

- 4.0 -0.01472 +0.20640 -195.41333
0.0 -0.01472 +0.20640 -195.41333
4.608 -0.01472 +0.20640 -195.41333
8.0 -0.0i472 +0.20640 -195.41333
12.0 -0.01472 +0.20640 -195.41333
15.0 -0.01472 +0.20640 ~-195.41333
20.0 -0.01472 +0.20640 -195.41333

0

- 4.0 -0.01518 0.0 2.00513
0.0 0.04672 +0.15901
4.608 -0.04605 0.0 -2.04529
8.0 ~0.03914 0.0 -3.66043
[2.0 -0.03619 0.0 -5.55989
15.0 -0.03503 0.0 -6.98343

20.0 -0.03389 0.0 -9.35520

Table 32. Numerator roots for CLa variations.
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Short Period Mode Roots for the Cp Variation

im

4
L 3 5

00

-5 015
-14
<43
+2
+1
- ot —rtp } t—o Re
-5 =4 =3 .2 -3 1 I
. ‘=1
cDaValues listed
beside roots

-2
-~_3

00 T4

=50 15
+T-5
Pigure 88a



Phugold Mode Roots tor the cpa Variation

]
.20
-1256
- 1.5
1-.!.5
-+.10
+.0s
t + -+ —» Re
10 .05 .05 .10
\"/ li
cDa alues listed {-0s
beside roots
+ =10
T+ =15
125
-.5“"—4”5
T —=20
Pigure 88b
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STABILITY
DERIVATIVE

-0.5
0.1256
1.5

-0.5
0.1256
1.5

-0.5
0.1256

224

NUMERATOR ROOTS

u

REAL IMAG I NARY REAL
-5.98845 +18.51477
-7.68330 0.0 - 7.93156
-0.43878 0.0 -32.75372
Ao
-0.01472 +0.20640
-0.01472 +0.20640
=0.01472 +0.20640
6
-0.09055 0.0 -2.00078
-0.04605 0.0 -2.04529
0.04537 0.0 -2.13671
Table 33. Numerator roots for CD variations.

o

REAL

1.10150
6.84425
29.04580

-195,41333
-195,4]1333
-195.41333



Short  Period Mode Roots for the Cm , Variation

=25

-15 +6

-8852

Cm,Values listed

+-3

beside roots -6
+-4

-.8852
Jb-—s
-Ler 1-6
+ -7
-250 T8
t-o

Figure 89a
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Phugoid Mode Roots for the Cm,Variation

=25 =20 =15

Cm,, Values listed
beside roots

Pigure 89b

-.15

10

--.05

L.-10

=15

- 120

.05
100 1
-
.05 -10 15



W

STABILITY
DERIVATIVE

-0.8852

-0.25

-0.08
-0.02
-0.01

REAL

-6

-7

-5

-4

-4

-4

-0
-0
-0
-0

-0

-0.
-0.
-0.
~0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

.91423
-7.

46700

.68330
~5.
.33012
-5,
-5,

99482

24383
16223

.98270
-4,
-4,

90034
88704

.87385
. 74795

.01472
.01472
.01472
01472
-0.
-0.
-0.
-0.
-0.
-0.
-0.
01472

01472
01472
01472
01472
01472
01472
01472

05433
048953
04605
04480
04356
04335
04315
04268
04244
04240
04237
04198

Table 34.

NUMERATOR ROOTS

u

IMAG INARY REAL
+4.94608
+2.95479
0.0 - 7.93156
0.0 - 9.93315
0.0 -10.92447
0.0 ~11.06490
0.0 -1 1.20053
0.0 -11.50937
0.0 -11.65618
0.0 -11.68021
0.0 -11.70412
0.0 -11.93702
Ao
+0.20640
+0.20640
+0.20640
+0.20640
+0.20640
+0.20640
+0.20640
+0.20640
+0.20640
+0.20640
+0.20640
+0.20640
6
0.0 -i.78232
0.0 -1.94544
0.0 -2.04529
0.0 -2.0915]
0.0 -2.14008
0.0 -2.14816
0.0 -2.15625
0.0 -2.17565
0.0 -2.18535
0.0 -2.18697
0.0 -2.18858
0.0 -2.20474

Numerator roots for Cmu variations.

REAL

5.05789
6.16344
6.84425

NN NN NN

-195.
-195.
-195.
-195.
-195.
-195.
41333

-195

-195.,
-195.
-195.
-195.
-195.

. 15734
.48395
.53808
.59212
.72143
. 78587
. 79660
.80732
.91432

41333
41333
41333
41333
41333
41333

41333
41333
41333
41333
41333
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Short Period Mode Roots for the c._ayariatlon

>

im
4
+5
~20ggl-7419
200 da
- r-3
-2
--1
{ t } + 4 +
-5 -4 -3 ~2 -1 2
+ -1
CL&Values listed
beside roots
L s
-l _3
200 + b
- 20£74]9
+-5

FPigure

90a



Phugoid Mode Roots for the cl&\larlation

Im
.20
=-2.0
(o]
20.0
T .15
JF.I.O
+.05
—f } —+ > Re
-10 -05 05 .10
+-0s
cL!aIues listed
beside roots
-L—.lo
+-15
20.0
-2.09
+-.20
Pigure 2Qb
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STABILITY
DERIVATIVE

230

O - N
ONO

O—-N

O - N
O ~NO

@R NN e]

419

REAL

~7.
~7.
.97289

~-0.
01472
~-0.

-0.
-0.
. 04608

-0

Table 35.

81212
68330

01472

01472

04604
04605

NUMERATOR ROOTS

u

IMAG INARY REAL
+1.36416
0.0 - 7.93156
0.0 -10.61842
Ao
+0.20640
10,20640
+0.20640
)
0.0 -2.08659
0.0 -2.04529
0.0 -1.86499

Numerator roots

for . variations.
a

REAL

6.76371
6.84425
7.21373

~-195.41333
-195.41333
-195.41333



Short Period Mode Roots for the CD&Variation

- 1.00 10

N
—7 T v - ¥ ¥ T T >

ch Values listed

beside roots

~-1.0Q 10

Figure 91a
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Phugoid Mode Roots for the cD& Variation

-+.20
o
=10

--.15

+.10

=+-.05
Cp. Values listed
o

beside roots

J--.l.u

=10,

T-20

Figure 91b

.05



NUMERATOR ROOTS

STABILITY
DERIVATIVE REAL IMAGINARY
-1.0 -4.34161 0.0
0.0 -7.68330 0.0
.0 -5.29188 t4.,46484
Ao
-1.0 -0.01472 +0.,20640
0.0 -0.01472 *0.20640
.0 -0.0i472 +0.20640
5]
~1.0 -0.04601 0.0
0.0 -0.04605 0.0
1.0 -0.04608 0.0

REAL

-16.68519
- 7.93156

-2.04686
-2.04529
-2.04371

Table 36. Numerator roots for CD. variations.
o

REAL

5.55105
6.84425
9.03719

-195.41333
~195.41333
-195.41333
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Short Period Mode Roots for the Cp,, Variation

Im
L
+5
+4
+3
+2
+1
=20.0
0 } $ 4 '
-10 =9 -8 -7 -1 2
+-1
+-2
+-3
Cm, Values listed 4-a
beside roots
+-5
T -6

Figure 92a



Phuageld NMede Roots for the Cy; Variation

Cm ¢ Values listed
beside roots

im
4
<+ .20
50
Q
-500
+ .15
4 .10
+4.05
+4 $ $ >
=10 -.05 .05 .10
+ =05
- —-10
+-15
=-50.0
o
50
<+ -20

Pigure 92b



NUMERATOR ROOTS

STABILITY
DERIVATIVE REAL IMAG | NARY REAL REAL
-50.0 -3.90188 0.0 -24,11478 4,.43293
-20.0 -4,97207 0.0 -14.47813 5.79415
-15.0 ~5.34358 0.0 -12.77020 6.11235
-10.0 -5.92015 0.0 -10.8939| 6.46725
- 5.237 -7.68330 0.0 - 7.93156 6.84425
0.0 ~7.17309 +2.36959 7.30864
5.0 -6.59500 +3.15130 7.80707
Ao,
-50.0 -0.01472 +0.20640 -195.41333
-20.0 -0.01472 +0.20640 -195.41333
-§5.0 -0.01472 +0.20640 -195.41333
-10.0 -0.01472 +0.20640 -195.41333
- 5,237 ~-0.01472 +0.20640 -195.41333
0.0 ~-0.01472 +0.20640 -195,41333
5.0 ~-0.01472 +0.,20640 -195.41333
6
-50.0 -0.04594 0.0 -2.22363
-20.0 ~0,04601 0.0 -2.10095
-15.0 -0.04602 0.0 -2.08177
-10.0 -0.04603 0.0 -2.06293
- 5.237 -0.04605 0.0 -2.04529
0.0 -0.04606 0.0 -2.02623
5.0 -0.04607 0.0 -2.00835

Table 37. Numerator roots for Cm& variations.
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Short Period Mode Roots for the . ch Variation

im
&
1s
-50
39168
2
00 44
500
+3
+2
+1
: t —t . i Re
-5 -4 -3 ] - 1 2
4-1
CL Values listed
q 4. -2
beside roots
+ -3
50.0
}o.o T4
- 503916
4 -5

Pigure 934
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Phugoid Mode Roots for the CLanriation

ch Values listed

beside roots

im
A
5000 T-20
-m;
3.917
=5.0
-+.15
<+.10
+.05
1 1 Il i . Re
L L] L] T
-10 =05 05 .10
<+ =05
+ =10
+=15
=50
3917
mg
500 <+ =20
Figure 93h



NUMERATOR ROOTS

u

STABILITY
DERIVATIVE REAL IMAG | NARY REAL REAL
- 5.0 -7.73020 +|.83643 6.60700
3.9168 -7.68330 0.0 - 7.93156 6.84425
20.0 -5.52374 0.0 -10.37532 7.27783
50.0 -4.21075 0.0 -12.23076 8.09894
Ao,
- 5.0 -0.01475 +0.20171 -204.55258
3.9168 -0.01472 +0.20640 -195.41333
20.0 -0.01465 +0.21575 -178.92893
50.0 -0.01449 +0.23718 -148. 18066
6
- 5.0 -0.04605 0.0 -2.04529
3.9168 -0.04605 0.0 -2.04529
20.0 -0.04605 0.0 -2.04529
50.0 -0.04605 0.0 -2.04529

Table 38. Numerator roots for q_ variations.
g
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Short Period Mode Roots for the cb. Variation

‘lm
+5
-|.o°w
la
ls
+2
+1
t 4 t —+—t- —+ —
-5 -4 -3 -2 -1 1
+-1
cD Values listed
q 4+-2
beside roots
+-3
+-4
-1,o°1.o
+-5
Pigure 94a



Phugoid Mode Roots for the ch Variation

im

5t
-
o

=10 =05

4 -05
ch Values listed

beside roots

=1.0
+ =20

Figure 94b
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STABILITY
DERIVATIVE REAL
-1.0 -4,88199
0.0 -7.68330
.0 -5.50557
-1.0 -0.01395
0.0 -0.01472
1.0 -0.01549
-1.0 -0.04605
0.0 -0.04605
.0 -0.04605
Table 39.

242

u

NUMERATOR ROOTS

| MAG | NARY REAL
0.0 -16.37834
0.0 - 7.93156
+3,67822

Ao
10.20645
0, 20640
*0.20634

6
0.0 -2.04529
0.0 -2.04529
0.0 -2.04529

Numerator roots

for Cp variations.
g

REAL

5.21643
6.84425
9.51381

-195.41487
-195.41333
-195.41179



¢y

Short Period Mode Roots for the Cmq Variation

cmq Values listed
beside roots

Figure 95a



Phugoid Mode Roots for the Cmanrlatlon

im
+.30
100 {25
009 120
=12.4337
-1-'15
=50.0(
410
los
+ 4 - +- }—» Re
- 10 -05 05 10
Cmyq Values listed 1795
beside roots
T -10
- 500
<+ =15
-124337
0.0 T2
10.0 - _.25
4+ =30
Figure 95b
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NUMERATOR ROOTS

STABILITY
DERIVATIVE REAL IMAG INARY REAL REAL
-50.0 -4.,67832 0.0 -21.12196 4.,22104
-30.0 -5.26804 0.0 -14,83064 5.33863
-29.0 ~-5.31297 0.0 -14.51478 5.40867
-28.0 -5.36047 0.0 -14.,19800 5.48035
-20.0 -5.88484 0.0 -11.58404 6.11845
-12.4337 -7.68330 0.0 - 7.93156 6.84425
- 5.0 -6.96597 +2.38145 7.69596
0.0 -6.44403 +2.89559 8.35687
5.0 -5.96067 +3.21405 9.09494
10.0 -5.51777 +3.40961 9.91393
Ao
-50.0 -0.01350 +0.20000 -208.22433
-30.0 -0.01413 +0.20333 -201.40389
-29.0 -0.0l1416 +0.20350 -201.06287
-28.0 -0.01419 +0.20368 -200.72185
-20.0 -0.01446 +0.20506 -197.99364
-12.4337 -0.01472 +0.20640 -195.41333
- 5.0 -0.01498 +0.20774 -192.87823
0.0 -0.01516 +0.20866 -191.17308
5.0 -0.01534 +0.20958 -189.46792
10.0 -0.01552 +0.21053 ~-187.76275
0
-50.0 -0.04605 0.0 -2.04529
-30.0 -0.04605 0.0 -2.04529
-29.0 -0.04605 0.0 -2.04529
-28.0 -0.04605 0.0 -2.04529
-20.0 -0.04605 0.0 -2.04529
-12.4337 -0.04605 0.0 -2.04529
- 5.0 -0.04605 0.0 -2.04529
0.0 -0.04605 0.0 -2.04529
5.0 -0.04605 0.0 -2.04529
10.0 -0.04605 0.0 -2.04529

Table 40. Numerator roots for C"] variations.
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STABILITY
DERIVATIVE

UN—OO0OOOO0OOO

VN~ O0OOQOO0OOO0OOO0

246

5
.
0

N—O—Wu
w

.
.25
.4268
.75
.0

.0

.0

.4268
.75

REAL

-7.
.67989
.70387
. 72796
.76429
.68330
.59867

-7
-7

-7
-7
-6

-6.
-5.
. 13507

-0.
.04482

-0

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

58511

22015
22593

.01495
.01484
.01482
.01479
.01476
.01472
.01465
.01460
.01442
.01406

04401

04504
04526
04561
04605
04691
04765
05142
09587

IMAGINARY

E85E88588888%

[oleoleNoNoloNoNoNeNol

coocooBhEEik

QOO0 O

OO0 OO OOOO

NUMERATOR ROOTS

u

.06610
.57952
.42618
.25135
.92196

21144
.20920
.20868
.20816
.20734
.20640
.20472
.20345
. 19859
. 18585

D

REAL

- 7.95156
- 9.17542
- 9.67839
-11.17913
-14.73205

-2.30446
-2.19391
-2.16597
-2.13790
~-2.09556
-2.04529
-1.95233
-1.87948
-1.57923
-0.56084

Table 41. Numerator roots for CLGE variations.

REAL

74177
.35208
.25523
. 15859
.01404
.844725
.53544
.29786
.35625
.47395

NUVOO O~

158.94513
811.68551

-820. 16606
-330.61069
-195.41333
-113.03072
- 85.83329
- 45,03736
- 20.56030



||T

STABILITY
DERIVATIVE

.
.05
.0
.0596
o

.5

.05

.0596

.05

:0596

REAL

-2,
.62690

-7.
-6.
76177

-0.
-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.
-0.
-0.
-0.

09831

68330
67433

01590
01553
0l516
01472
01442
01145

03843
04081
04320
04605
04798
06731

NUMERATOR ROOTS

u

IMAGINARY

+ I+

WN O

NeNeoNe]
W
w
~

Ao,

+0.20626
+0.20630
+0.20635
+0.20640
+0.20644
+0.20676

cNoNoNoNoNe]
eNoNeoNoNoNe]

REAL

-2.
-2.
-2,
-2.
-2.
=2.

.58753
.16199
L9259
.93156

05190
04983
04776
04529
04361
02679

Table 42. Numerator roots for QDGE variations.

REAL

136.99857
6.84425
4.82778
.29735

-195.52065
-195.48703
-195.4534|
-195.413353
-195.38617
-195.11722
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STABILITY
DERIVATIVE

-i5.
-10.

-15.

- 5.

I
— OO0 —W

248

— OO0 ~-—WuUuoOoOwm
OQUO~NNOOOO

OUVONNOOOO
B

|
— OO0 —Wwu

OUVIONNOOOO
g

Ul
(]

REAL

_5~

-5
-5
-5
-7
-6

-0

~0

-0

Table 43.

25815

.30278
44662
.66806
.68330
.66992
-3.
-2,
-2,

96317
55070
25392

.01522
-0.
01512
-0,
-0.
.01434
-0.
.01682
.01602

01519

01503
01472

00003

.04267
.04282
.04327
.04388
.04605
.04899
.01042
.03486
.03832

NUMERATOR ROOTS

u

IMAGINARY

OO0

.51054
.21546
.96412
. 10942

b5 oco0o0o0o

Ao,

+0,20851
£0.20839
*0,20807
*0.20767
+0.,20640
*0,20486

*0.,21467
*0.21158

D

OO0 OO0
OO0 OO OC

Numerator roots for Cm
S

REAL

-33.18891
=-27.27432
-19.44515
-15.01042
- 7.93156

-4.,23938

- 2.15785
- 2.15263
- 2.13696
- 2.11600
- 2.04529
- 1.95623
15.26480
2.47223
2.,32224

variations.
E

REAL

11
A NO DO

29.67621
23.80632
16.12106
11.90781

.84425
.56927
.84424
.66917
.26274

-2239.746
-1494.563
- 749.38113
- 451.30835

195.41333
115.97763

0.01042
70.32293
144 .83956



Short Period and Phugoid Roots for c.g. Vanation
Im

47. cg. location is listed beside
roots as percent of m.a.c.

O - phugoid roets
O — short peried reots
O - shert period—phugoid roets

475

Figure 96
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c.g. LOCATION

(% m.a.c.)

0. -4
26, -4
42. -5
45, - 6
47. -6
47, -6
47. ~ 6
48, -~ 6
50. -7
52, -7
55. -8
100. -1

SHORT PERIOD ROOTS

Real

.6345
.0848
L3421
L1725
.6547
.6764
.7615
.9626
.2381
.6453
.0056

.5233

Table 44.

Imaginary Real

+7.5094

14,3679
~-2.1568
-1.1979

-0.4796

SHORT PERIOD / PHUGOID

Real

.40098
. 36069
.26908
. 15946
.06470
.03672

01703

Imaginary

.06724
.19146
. 30056
.34295
31623
.28517

. 23765

Real

-0.0136

-0.0136

-0.0182

-0.0763

-0.3432

Short Period and Phugoid Roots for c.g. Variations.

PHUGOID ROOTS

Imaginary

+0.1865
+0. 1801

+0.1175

Real

0.02000
0.13957
0.14501
0.16725
0.22966
0.35661
0.69487
.11858

7.3668]



RN

Short Period Mode Roots for the St Variation

Im
3
4+ 6
200
150
+5
100
+ 4
75
+ 3
50
<4 2
AR, =constant
41
' t ; t . —+ t + +—- Re
-8 -7 -6 -5 -4 -3 -2 -1 1

4 -1

S¢ values listed beside

roots as percent of 1>

original value 5
<=3

75
4 -4
100
<=5
150
200
+ -6
Figure 97a
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Phugoid Mode Roots for the S; Variation

ARt = constant

—t+» Re

-.05
St values listed beside
roots as percent of

original value

r =15

-+ =20

Figure 97b




Short Period Mode Roots for the I; Variation

with inertia
changes

150,

25

I values listed beside
roots as percent of
original value

Figure 98a

L

Re
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Phugoid Mode Roots for the iy Variation

Im
4
+20
100
200
50
+15
45
+.10
+05
. — —-Re
.05 05
It values listed beside
roots as percent of - ~0S
original value
<+ =10
45
<4 =15
50
200
100
+ =20
Figure 98b



Short Period Mode Roots for the g Variation

125

04

g values listed

beside roots T2
04

0.85

125

Figure 99a
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Phugoid Mode Roots for the e Varlation

im

Lo
15
-851
4

. +—a= Re

—f—

-.05 05

Ty values listed
beside roots + =05

+~10

+ =15

-85
125
+ =20

Figure 99b
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| - T T

=50 20 -10

=308 LS

% Values listed

beside roots

Figure 100a
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—T
~020

Spiral Mode Roots for the cyﬁ\larlatlon im
A
1005
3.0 06 <308 =20 =50 LR
—O———et-O———O——0—} —- }—»He
-015 =010 =005 005
Cyg values listed
beside roots +~005s
Figure 100b
Roll Mode Roots for the %Varlation Im
:L 1
-50 30
+ ~+————+ t {—» Re
-14 -13 -12 ~11 1

Figure 100c




NUMERATOR ROOTS

B
STABILITY
DERIVATIVE REAL IMAG I NARY REAL REAL
-5.0 .02272 0.0 -12.58832 -115.40198
-2.0 .02272 0.0 -12.58832 -115.40198
-1.0 .02272 0.0 -12.58832 -115.40198
- .308 .02272 0.0 -12.58832 -115.40198
.6 .02272 0.0 -12.58832 -115.40198
1.5 .02272 0.0 -12.58832 -115.40198
2.5 .02272 0.0 -12.58832 -115.40198
3.0 .02272 0.0 -12.58832 -115.40198
¢
-5.0 0.0 0.0 -6.81839 9.22719
-2.0 0.0 0.0 -5.86461 9.69719
-1.0 0.0 0.0 -5.55962 9.86678
- .308 0.0 0.0 -5.29036 9.86759
0.6 0.0 0.0 -5.08575 10.15225
1.5 0.0 0.0 -4.82705 10.32069
2.5 0.0 0.0 -4.54640 10.51463
3.0 0.0 0.0 ~4.40880 10.61431
v
-5.0 ~2.11867 0.0 - 13344 -12.65862
-2.0 - .41643 + .33074 -12.65543
-1.0 - 17978 + 50051 -12.65501
- .308 - .01387 * .52896 -12.65493
0.6 . 19895 * ,49324 -12.65086
1.5 .41204 33633 -12.64990
2.5 27717 0.0 1.02041 -12.64890
3.0 .21422 0.0 1.32018 -12.,04842

Table 45 . Numerator roots for Cy variations.

B

259



Dutch Roll Mode Roots for the c.BVarlatlon

125 10
1 3 la ' c | 3
1) L L4 ) |
-7 -6 -5 -4 -3
C|BValues listed
beside roots
Figure 101a
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Spiral Mode Roots for the Clﬁ Variation

Im
A
<405
R 1.0 =089 10 1.25 15
} 09 O }-0— —O~—}—» Re
=05 10 20 25
(:|g values listed
beside roots
-r-..o's
Figure 101b
Roll Mode Roots for the c.ﬁ Varilation Im
4
+1
-10 =089 10 15
O ————| o ———t—— > Re
-14 -13 -12 -11 ~-10 -9 1
<+ -1
Figure 101c



NUMERATOR ROOTS

B
STABILITY
DERIVATIVE REAL IMAGINARY REAL
-1.0 .02272 0.0 -12.588
- .089 .02272 0.0 -12.588
.5 .02272 0.0 -12.588
1.0 .02272 0.0 -12.588
1.25 .02272 0.0 -12.588
1.5 .02272 0.0 -12.588
¢
-1.0 -21.8216 0.0 31.9475
- .089 - 5.2904 0.0 9.8676
.5 .54328 *19.03747
1.0 - .96334 +26.741
1.25 - 1.71665 +29.8279
1.5 - 2.4700 +32.6067
L
-1.0 . 16499 +].8909
- .089 - .01387 + .52896
.5 -1.5533 0.0 1.26811
1.0 -2.2648 0.0 1.74875
1.25 -2.57468 0.0 1.9370
1.5 -2.86861 0.0 2.10452

Table 46. Numerator roots for CzB variations.

262

REAL

-115.42
-115.42
-115.42
-115.42
-115.42
-115.42

[oNeoNoNoNeoNe]
QOO0 OO

-13.0132
-12.65493
-12.3981
-12.16725
-12.04559
-11.91919



Dutch Roll Mode Roots for the anVarIatIon

Ty

.6
5 T°9
4 T8
--7
.25¢
) Le
.ISV “Ts
- q
0646
43
42
o.oq T1
=02
'I { : : =05 -.05 Re

C"B Values listed

beside roots

0646
150 Lg
4-6
.25<>
+-7
s0 | _ o
.5
4-9
6
+-10

Figure 102a
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Spiral Mode Roots for the cnﬂVarlatlon

=10 =05 =02
: - 40—t O——t———O—+ e -+ Re
-7 -6 -5 -4 -3 -2 -1 ) 1
4-1
Cn@ values listed
beside roots Figure 102b
Roll Mode Roots for the CnBVarlatlon Im
é
+1
=)0
A}, : | : : + 4= Re
~13 60 -12 -5 -4 -3 -2 -1 1
-i—-l

Figure 102¢




STABILITY
DERIVATIVE

- .05
- .02
0.0
. 06455
A5
.25
.4
.5
.6

0.0
.06455
.15
.25

.4

REAL

.02272
.02272
.02272
.02272
.02272
.02272
.02272
.02272
.02272

.0918
.81052
.61768
.86759
.9962
.6478
.3478
381l
31811

NNRERSOWOWO O —

-.08494
-.06641
-.05405
-.01387
.03877
. 10076
.00538
-. 12719
-.19755

Table 47.

NUMERATOR ROOTS

B

IMAG | NARY

o
o

[eNeoNoloNoNeoNo e
[cNeoNololoNoNeNe)

RSy

WHOOOOOOO

I+

VVWNOOOOOOO

.60700
.5886
.5756
.52896
.45654
.534167

H i+ H

[eNoNe
[eNeNel

Numerator roots for Cn

REAL

-12.588
-12.588
-12.588
~-12.588
-12.588
-12.588
-12.588
-12.588
-12.588

-6.4556
-6.17427
-5.98144
~-5.29036
-4.3599
-3.0116
.28833

.38233
.63929
.83419

variations.

REAL

-115.402
-115.402
-115.402
-115.402
-115.402
-115.402
-115.402
-115.402
-115.402

[cNoNeoNoNeoNoNeNoNe o]
[cNoNoNoNeololNoNeNoNo]

-12.66270
-12.6598

~-12.65785
-12.6549

-12.64358
-12.63429
-12.62066
~-12.61177
-12.60305
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Dutch Roll Mode Roots for the CypVari_ation

20
L 57

1 1 1 1

[ ! T T
-20 -15 -10 =05
CypValues listed
bheside roots

75 +-30

-0373

70

Figure 103a

05

——» Re
10
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Spiral Mode Roots for the Cyp Varlation Im

<.005
. 7570
} { 4 } ——»Re
-,020 -015 -0373 -010 -,005 005
Cyp values listed 4005
beside roots
Figure 103b
Roll Mode Roots for the cypVarlatlon Im
1
-7.5 -0373 70
t O———————0— } /\, +— Re
-14 -13 -12 ~11 1
41

Figure 103c



NUMERATOR ROOTS

g
STABILITY
DERIVATIVE REAL IMAG INARY REAL REAL
-7.5 0.02177 0.0 -15.624 - 98.470
- .0373 0.02272 0.0 -12.588 -115.402
7.0 0.02373 0.0 -10.552 ~133.746
¢
-7.5 0.0 0.0 -5.2904 9.8676
- .0373 0.0 0.0 -5.2904 9.8676
7.0 0.0 0.0 -5.2904 9.8676
v
-7.5 0.25191 +0.45598 -13.187
- .0373 -0.01387 +0.52896 -12.655
7.0 -0.29057 +0.45964 -12.102

Table 48 . Numerator roots for Cy variations.
p
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Dutch Roll Mode Roots for the Clp Variation

-1

-02 =05 35

-4707 0.0

. 02
-40

Im
A

+30

o

+—» Re

L

~10

C},, values listed

p

beside roots

-8 +-30
~1. )02
14n§i\1-’a/ﬁgo
=0, .

-05 05

-—05

-0.2 4--35

Figure 104a
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Spiral Mode Roots for the c,pVariatlon

Im
+.02
0.0 =05 -2 4707 40
1 2 [l e '] L oY 2
L LR  § L] - L L] -~ ¥
-16 =14 =12 =10 -08 -06 -04 -02 =10
+-02
c,p values listed
beside roots Figure 104b
Roll Mode Roots for the CjpVariation
-3.0 =20 -10 =-4707 =2 =05
1 Y . 3 b 1 . L i Y o U L]
L ~ L] | ~ 1 J L L i 1
-90 -80 ~70 - 60 -50 =40 -30 -20 =10

Figure 104c

.02

——————+t—= Re

.02

.—.———}—’ Re
10

$-10




STABILITY
DERIVATIVE REAL
-4.0 .00270
-3.0 .00360
-2.0 .00539
-1.0 .01076
- .4708 .02272
- .2 .05256
~ .05 17927
0.0 .49080
.02 1.15326
-4.0 -5.29036
-3.0 ~5.29036
-2.0 ~5.29036
-1.0 -5.29036
- .4708 -5.29036
- .2 -5.29036
- .05 -5.29036
0.0 ~5.29036
.02 ~5.29036
4.0 ~ .03070
-3.0 - .03039
-2.0 - .02969
1.0 - .02673
- .4708 - .01387
- .2 .03660
- .05 .3534]
0.0 .70033
.02 1.00127

NUMERATOR ROOTS

IMAG INARY

[eNeoNoNojoNoNoNoNe)
OO O0OO0OO0COOOO0

OCOOO0OOOOOO

[eNeNoNoNoloNoNeNe]

e H

xl,
X1,
.

B

14

18119
.20996
.25798
.36562
.52896
.79875

20658
30297
17834

REAL

-107.822
- 79.796
53.132
26.599
- 12.588
5.4426
- 1.5962
.58346
.35271

.8676
.8676
.8676
.8676
.8676
.8676
9.8676
9.8676
9.8676

O \O OO WY

Table 49. Numerator roots for Cgp variations.

REAL

~115.135
-116.713
-116.934
-117.025
-117.032
-117.066
-117.0724
-117.0743
-117.0769

[eloloNoNoNoNoNoNae]
OCOO0OOOOOOQ

105.960
79.514
53.068
26.628
12.6549
5.59728
2.26388
1.63539
|.4573]
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Dutch Roll Mode Roots for the Cnp Variation

Cnp values listed

1

=-0295
+ 3

beside roots
-2 -1

J.b-.s +-s

Figure 105a




ele

Spiral Mode Roots for the Cnp Variation

0,15 =-0292 =05 =1,0

—o : 4 —o0———t *+—|—o0—o- - Re
-,06 -08 -.04 -03 -02 -,01 o1
+-01
cnp values listed
heside roots
Figure 105b
Roll Mode Roots for the cnp\larlatlon
Im
<41
— o004 | " {—»-Re
-13 w0292 g2 -11 1

41

Figure 105¢c



STABILITY
DERIVATIVE

-1.0

- .5

- .02923
.15
.25
.30
41

-1.0

- .02925
A5
.25
.30
.41

-1.0

- .02923
.15
.25
.30
4l

274

REAL

.01584
01877
.02272
.02472
.02599
.02667
.0283]

9.86759
9.86759
9.86759
9.86759
9.86759
9.86759
9.86759

.04698

.02029
-.01387
-.03371
-.04523
-.05145
-.06638

Table 50.

NUMERATOR ROOTS

B

IMAGINARY

OQOOO0O0OOO0O
OCOOCOOOO0

ol eloloNoNeNol
QOO0 OOCO

v

+.43785
+.48044
*.52896
*.55521
+.56965
+.57728
+,59510

Numerator roots for Cp

p

REAL

-19.1345

~-15.6501

-12.58832
-11.46221
-10.84717
~-10.54233
- 9.87778

-5.29036
-5.29036
-5.29036
-5.29036
~-5.29036
-5.29036
-5.29036

variations.

REAL

-110
=113
-115
-118
-118
-119
-119

OOOO0OO0OOO
QOO OOOO0O

-18.
-15
-12
-1
-10.
-10
- 9.

.497
. 984
.402
.178
.794
.099
. 766

45365

.47606
.655
.56659

95871

.65385

98065



Dutch Roll Mode Roots for the cerarlatlon

40

.2103

cyr values listed

beside roots

&

-1 =05

40

,2103
-40

=10

<+ =30

Figure 106a
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Spiral Mode Roots for

the Cerarlatlon

Figure 106c

im
-1-005
: 40 0.2103 -:-ﬁ : , = Re
~.020 -.015 -.010 ~.005 005
Cy, values listed
beside roots 4-00s
Figure 106b
Roll Mode Roots for the Cy,. Variation
im
A
+1
-40 40
—+ $——0——+ : —+—AM, = Re
-14 -13 -12 -11 -10 1




STABILITY
DERIVATIVE

-4.0
.2103
4.0

-4.0
.2103
4.0

-4.0
.2103
4.0

NUMERATOR ROOTS

B
REAL IMAG [ NARY REAL
.01953 0.0 -12.589
.02272 0.0 -12.588
.02666 0.0 -12.5767
(0
0.0 0.0 -5.8982
0.0 0.0 -5.2904
0.0 0.0 ~4.8256
]
-.01387 +,52896
-.01387 +.52896
-.01387 +,52896
Table 51.  Numerator roots for Cyr variations.

REAL

-136.167

-115.40
- 99.87

10.5344
9.8676
9.4618

-12.655
-12.655
-12.655

277
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Dutch Roll Roots for the Cerariation

Cj, values listed
beside roots

0959
20

~20

-—4

Figure 107a




6LC

Short Mode Roots for the c, errlatIon

pm
“Tas
-3.0 -20 0.0 0959 20 40
: O —O0—4—0 °- —O—t 0 > Re
=15 -10 -05 Qs 10
c.r values listed
beside roots
-+ ~05
Figure 107b
Roll Mode Roots for the Ch_ Variation '
m
1
~30 =~20 0959 20 40
t—8—t———t—o——t———t———t———+——+—A |- ———
-15 ~-14 -13 -12 =1 -10 -9 -8 -7 -8 -5 1
1

Figure 107c




NUMERATOR ROOTS

B
STABILITY
DERIVATIVE REAL IMAG INARY REAL REAL
-5.0 -1.8946 0.0 -10.26117 -116.459
-3.0 -1.03898 0.0 -11.2754 -116.30101
-2.0 - .66903 0.0 -11.72497 -116.0221
0.0 - .00695 0.0 -12.54671 ~-115.8325
0.0959 0.02272 0.0 -12.588 ~-115.402
2.0 0.57860 0.0 -13.29262 -114.901
4.0 1.10784 0.0 ~-13.98292 -114.740
5.0 |.35548 0.0 -14.31136 -114.659
7.0 1.82262 0.0 -14.94063 -114.497
¢
-5.0 -289.21 0.0 0.12108 0.0
-3.0 -174.06 0.0 .24276 0.0
-2.0 -116.57 0.0 .39352 0.0
0.0 - 7.75308 0.0 6.85029 0.0
0.0959 - 5.29036 0.0 9.8676 0.0
2.0 - .52488 0.0 114.8989 0.0
4.0 - .29323 0.0 229.9438 0.0
5.0 - .24677 0.0 287.5357 0.0
7.0 - .19355 0.0 402.759 0.0
4
-5.0 -.01387 *,52896 -12.65493
-3.0 -.01387 +,52896 -12.65493
-2.0 -.01387 *,52896 -12.65493
0.0 -.01387 +,52896 -12.65493
.0959 -.01387 *,52896 -12.65493
2.0 -.01387 *,52896 -12.65493
4.0 -.01387 *.52896 -12.65493
5.0 -.01387 % 52896 -12.65493
7.0 -.01387 £ .52896 -12.65493

Table 52. Numerator roots for Cz variations.
r
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Roots for the Cpn, Variation
-105
-9 =6 =55
ﬂ@# -0—+ $ — OO~
L8 2 ~-10 -8 -6

Cn, values listed
beside roots

Figure 108




STABILITY
DERIVATIVE

282

REAL

.03548
.02947
.01077
.00755
.00430
.00229
.01586
.02272
.02496
.02638
.02996

1

.93162
.28858
. 6698

.94212
.2278
.8399
L2274
.8676
.2420
.4055
.823

QOO VWO~ oOWU,m M

-.01387
-.01387
-.01387
-.01387
-.01387
-.01387
~.01387
-.01387
-.01387
-.01387
~.01387

IMAG INARY

NUMERATOR ROOTS

B

COOCOODOOOOOO
QO OO0 OODOOOO0O

-11.748

|
(@]

S e s s

.840

.3875
.0225
.6709
.0084
.8466
.2904
.2042
.1128
.893

MUUUu~N @

1

.52896
.52896
.52896
.52896
.52896
.52896
.52896
.52896
.52896
.52896
.52896

REAL

-12.

-12

-12.
-i2.
-12,

-12

-12.
-12.
-12.
-12.
-12.

4639
L4762
51447
52111
5278
.5415
5697

588
589
592
599

Table 23, Numerator roots for q”_ variations.

REAL

-128.
~-127.

-123

-122.
-122.

-120
-118

=115,

-1i4
-114
-113

ejolonolooNoNoNeNoNe]
OO O OO OOOOO0O

~-12.
-12.
-12.
-12.
-12.
-12.
-12.
-12.
-12.
-12.
-12.

568
287
.444
803
163
.881
317
402
.650
.394
.752

65493
65493
65493
65493
65493
65493
65493
65493
65493
65493
65493



NUMERATOR ROOTS

B
STABILITY
DERIVATIVE REAL IMAGINARY REAL REAL
-1.0 .02418 0.0 -12.55031 20.22192
- .75 .02377 0.0 -12.55567 27.3650
- .5 .02333 0.0 -12.56214 41.64652
- .25 .02272 0.0 -12.57005 84.47888
0.0 .02297 0.0 -12.58048
.1874 .02272 0.0 -12.59078 -115.40684
.25 .02264 0.0 -12.5943] - 86.79281
.5 .02232 0.0 -12.61223 - 43.95034
.75 .02202 0.0 ~-12.63853 - 29.64899
.00 .02172 0.0 -12.68051 - 22.46934
¢
-1.0 0.0 0.0 -6.57089 7.74879
- .75 0.0 0.0 -6.26998 8.16388
- .5 0.0 0.0 -5.98623 8.5961 |
- .25 0.0 0.0 =5.71911 9.04498
0.0 0.0 0.0 -5.46802 9.50987
. 187 0.0 0.0 -5.28991 9.86846
.25 0.0 0.0 -5.23228 9.99012
.5 0.0 0.0 -5.01116 10.48499
.75 0.0 0.0 -4.,80392 10.993753
.00 0.0 0.0 -4.60975 I1.51555
14
-1.0 -.31014 1,4297 -12.61691
- .75 -.24760 t. 46833 -12.62560
- .5 -.18515 £,49616 -12.63411
- .25 -.12278 *,51497 -12.64245
0.0 -.06049 *.52576 -12.65062
.1874 -.01386 +,52892 ~-12.65664
.25 .00171 *,52906 -12.65863
.5 .06384 *,52503 -12.66649
.75 . 12589 £,51353 -12.67420
.00 .18787 £,49407 -12.68176

Table 54 . Numerator roots for'C‘y6 variations.
R
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STABILITY
DER!VATIVE

-3.0
-2.0

-3.0
-2.0
-1.0
0.000!
.01475

.15
.50

WN —-
OO O

284

NUMERATOR ROOTS

B
REAL IMAG I NARY REAL
- .48468 0.0 -168.7451 |
- .57868 0.0 -153.71383
- 1.17612 0.0 -136.61884
-12.32283 0.0 -115.75927
-12.59078 0.0 -115.40684
-13,24437 0.0 -114.55102
-15.16965 0.0 -112.0589
-22.91592 0.0 -102.37878
~-39,3933 0.0 - 83.20187
-58.6349 t41.37965
-55.98877 *62.39119
¢
- .72027 +3,15419
- .72763 +3,17672
- .74972 +3,24328
-10.29436 0.0 892.35499
- 5.2899] 0.0 9.86846
- 2.69752 0.0 3.05337
- .41106 +],96457
- L6172 +2.81787
- .66137 +2,96712
- .68346 *3.03875
- .69082 +3,06222
1
2.51434 0.0 22.92565
3.29649 0.0 10.61332
|.70459 +3,08103
- .0l1042 * ,58161
- .01386 + ,52892
- .02153 + ,38078
- .48245 .40343
-1.09987 . 94997
-1.42295 | . 23465
-1.68133 | .47382
-1.79385 1.58414
Table 55. Numerator roots

for CZGR variations.

REA

L

25.38497
15.71175
4.47829
.03009
.02272
.00605
.03437
. 12576
19315
.25419
.28250

11
NN

~47

OO0 OO OOOOOO0
[eNooloRoNoNoNoNeNoNe]

.50023
. 78665
. 10259
.49040
.65664
-13.
-14.
-18.
-24.
-35.
. 75055

05783
20363
26858
13854
93603




NUMERATOR ROOTS

B
STABILITY :
DERIVATIVE REAL IMAG I NARY REAL REAL
-.12 -12.47042 0.0 .02617 -209.71058
-.10 -12.49848 0.0 .02532 -174.92893
-.08 -12.54195 0.0 .02407 -140.13146
-.0658 -12.59078 0.0 .02272 -115.40684
-.04 -12.78700 0.0 .01796 - 70.37482
-.02 -13.49442 0.0 .00657 - 34.90327
-.005 -11.14076 +4,97905 -.04503
.005 -10.91735 0.0 .21055 5.75643
.01 -11.38982 0.0 .09625 15.0313|
.02 -11.76114 0.0 .05942 32.81567
)
-.12 -6.5992| 0.0 15.66940 0.0
-.10 -6.20569 0.0 13.61845 0.0
-.08 -5.71878 0.0 11.47411 0.0
~.0658 -5.2899]| 0.0 9.86846 0.0
-.04 -4,19447 0.0 6.63494 0.0
-.02 -2.62335 0.0 3.40639 0.0
-.005 - .23002 +2.27629 0.0
.005 - .64437 +3,77708 0.0
.0l - .85155 +4,32203 0.0
.02 -1.2659]| £5,22012 0.0
P
-.12 -.0335 + ,55252 -12.57804
-.10 -.02871 * ,54692 -12.59717
~-.08 -.02155 * 53837 -12.62581
~.0658 -.01386 t ,52892 -12.65664
-.04 .01380 % ,4925| -12.76809
-.02 .08232 * 37954 -13.04833
-.005 ~-.28175 I.16989 -14.63102
.005 -.78637 t 85217 - 9,87907
.0l -.37960 = * 79577 -11.26536
.02 -.21060 1 ,7084| -11.88973

Table 56. Numerator roots for cnaR variations.
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Dutch Roll Mode Roots for |y Variation

A - with inertia effects
O - without inertia effects
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Figure 109a
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Spiral Mode Roots for |, Variation
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Dutch Roll Mode Roots for S, Variation with Constant AR
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Spiral Mode Roots for S, Variation
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50 75 100
§-0- —o- : 4 + ——o29 — Re
-.30 -.25 -.20 -.15 -.10 - .05 0.0
Sy values listed beside roots
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Figure 110b
Roll Mode Roots for Sy Variation
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Dutch Roll Mode Root for the Dihedral Variation
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Spiral Mode Roots for Dihedral Varlation
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listed beside roots

Figure 111b

Roll Mode Roots for Dihedral Variation
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Dutch Roll Mode Roots for Dihedral and S, Variation
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Figure 112a
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Spiral Mode Roots for Dihedral and Sy Variation

im
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Values of dihedral in degrees and
Sy as percent of original value
are given beside roots
Figure 112b
Roil Mode Roots for Dihedral and S, Variation
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DERIVATION OF THE EQUATIONS OF MOTION

Derivation for the equations of motion, following Dynamics of the Airframe
(Ref. 17, is based on Newton's laws, ie., motion with reference to axes fixed
in space. The several assumptions which form the basis for this derivation
will be presented throughout the following discussion as they are needed tfo
clarify the various steps of the derivation. The first two of these assumptions
specify the nature of the body being studied and the atmosphere in which it

is set.

Assumption | The airframe is assumed to be a
rigid body; thus, the distance
between any specified points in
the body are invarient.

Assumption Il The earth is assumed to be fixed
in space, and the earth's atmos-
phere is assumed to be fixed with
respect to the earth.

Table A-1, with the aid of Figure A~1, defines the direction of the axes with
respect to the airplane, as well as the nomenclature needed to apply Newton's
laws.

Figure A-1. Direction of the axes with respect to the airplane.
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Linear Angular Summation | Summation | Displace-] Moments
Axis | Velocity | Velocity | of Moments | of Forces ments of Momen- | Moment
Along Along About Along About tum About of
Axis Axis Axis Axis Axis Axis Inertia
P
X U Rolling L IFy ] hy T
Vel.
y Qh IM ZF 6
y Pitching h T
Vel. Y Y vy
R
z W Yawing IN IF, v h, I,
Vel .
Table A-1. Direction of the axes with respect to the airplane and

Newton'!s second

nomenclature needed to apply Newton's Laws.

law of motion states that the rate of change of momentum of

a body is proportional to the net force applied to the body and that the rate of
change of the moment of momentum is proportional to the net torque applied to the

body.

and

The mathematical

Assumption 11|

d

2Fy = S (ml)
d
IFy = g5 (V)
ZFy = S (W)
dhy,
L= g
dh
_ Sy
MM = 3
dh,
IN = —%
dt

statements of the law can be written

The mass of the airplane is
assumed 1o remain constant for

the duration for any particular
dynamic analysis.

(A-1)

(A-2)
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Assumption |1l permits the mass of the airplane to be written outside the dif-
ferentiation sign in Equations (A-1).

The moments of momentum referred to in Equations (A-2) can be expanded by
using an element of mass of the airplane dm which is rotating with the angular
velocity (W = Pi + Qj + Rk). This element of mass is at the point (x,y,z)
measured relative to the c.g. of the airplane. The motion of the element of mass
can be approximated by six linear velocity components (Py, Pz, Qx, Qz, Rx, and Ry),
as seen In Figure A-2,

Figure A-2. Linear velocity components of an element of mass caused
by an angular velocity @ having components P, @, and R.

The x, y, and z components of the moment of momentum are calculated by summing
the moments of these velocity components about each axis and multiplying by mass
dm. For example,

dhy = y(yP)dm + z(zP)dm - z(xR)dm - y(xQ)dm.

Thus, if the moments are taken about the x, y, and z axes, the following set of
equations is obtained:

dhe = (y? + z2)P dm - zx R dm - yx Q dm

dh

y (z2 + x2)Q dm - xy P dm - yz R dm

dh, = (x2 + y2)R dm - zx P dm - zy Q dm (A=3)
z

For a finite mass, the componenis of the moment of momentum are the integrals of
Equations (A-3). Taking T,y = j?yz + z2)dm, Iy =.f§2dm, and Iyz = Izy the
integral relations become

hy = Py = QIxy —Rlxz
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hZ = RIZZ - PIXZ - QIyZ (A-4)

The derivative dh/dt may be found by differentiating Equations (A-4) with
respect to time. Thus, the equations of motion relative to inertial axes become

IFy =m %%
4V
IF, =m %¥
dh, . . . . . .
ZL = 937 = Plux + Plyx = QIxy - QIxy - RI,; - Rlxz
_ dh:: _ b4 L] L] - L] L]
ZM = d_|_ - QIyy + QIyy - RIyZ - RIyZ - PIxy - PIxy
TN = dhz o . » - - - (A 5)
= g7 = RIzz + Rlzz - PIxz - PIxz - QLyz = QLy; -

For ease in interpreting flight measurements, one desires to change the
fixed axes system to an Eulerian axis system, ie., a right-hand system of ortho-
gonal coordinate axes which has its origin at the center of gravity of the air-
plane and its orientation fixed with respect to the airplane. Velocities of the
airplane measured relative to these axes are absolute velocities, since, at any
instant, the Eulerian axes are considered to be fixed In space. Also, moments
and products of inertia in the Eulerian axls system are independent of time,
since these axes are fixed in the airplane; thus, dI/d+ = 0. Since the Eulerian
axis system moves with respect to inerital space, the absolute acceleration
{(measured in the Eulerian system) can be written

A‘abs = dVT/d+ + W x VT

If U, V, and W are components of V% and P, Q, and R are the components of E} then

a, = U + QW - RV
ay =V + RU - PW
az = W + PV - QU (A-6)

In a similar manner, the change in the moment of momentum can be written

dhaps/dt = dh/dt + w x h

where w x h = [P

ik
QR
hyhyh,
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Thus,

a
o
X

a o
> —+

N TN
a o

_|.

o~

o

n

1

&
dt

) _ohy .
L be _ dF N0~ hy

dh
7L + heR - hyP

dhz
bS 'a‘_"_—— + hyP - th (A—7)

o—"
n

Assumption IV The xz plane is assumed To be a

plane of symmetry.

Using Assumption tV and the orientation convention of Figure A-1, the equa-
written

tions of motion can be
ZF«
ZFy

LF,
IL =
M =

IN =

m(ﬂ +
m(V +

m(W +
ﬁ)Ixx -
0Ty

-+

Eulerian angles are those
To superimpose it upon another
first. Because the angles are
if the indicated operations are to yield correct results. The seguence of these
angular changes are vaw, pitch, and roll. To carry out this superposition, one
first yaws through a positive angle ¥ in accordance with a right-hand system so

that

(see Figure A-3)
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1

<I

NI

QW - RV)

RU - PW)

PV - QU)

RI,, + OR(I,, - I,,) - POL,,

angles through which one axis system must be rotated

having an initial angular displacement from the
not orthogonal, the order of rotation is important,

= X cos § + Y sin P
= Y cos ! -X sin Y

(A-9)

|
N




Figure A-=3. Yaw through a positive angle ¥ in accordance with a
right-hand system.

The next rotation (Figure A-4) is a positive pitch through the angle 6, which
gives

Xy = Y} cos 6 - Zy sin 6

-<
N
I
=<l

1
= Zy cos B + X| sin 6 (A-10)

N
N
|

Figure A-4. Positive pitch through the angle 6.
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The final rotation (Figure A~5) is through the roll angle ¢, which gives

X3 = X2

=Y, cos ¢ +Zy sin ¢

=<
N
{

N
W
|

=7, cos ¢ - Yp sin ¢ (A-11)

Figure A-5. Rotation through the roll angle ¢.

Substituting Equations (A-9) and (A-10) into Equations (A-11) yields the trans-
formation needed fo convert the initial axis system to the final system:

Xz = X cos 8 cos Y + Y cos 6 siny - Z sin O

Yz = X(cos ¥ sin 8 sin ¢ - sin ¥ cos ¢)
+ Y(cos Y cos ¢ + sinyP sin B sin ¢)
+ Z(cos 6 sin ¢)

73 = X(cos § sin 8 cos ¢ + sin Y sin ¢)

+ Y(sin Y sin 6 cos ¢ - cos P sin ¢)
+ Z(lcos 6 cos ¢) (A-12)

The analysis of flight motions is concerned primarily with the vehicle's
hehavior in response to disturbances from initial conditions. Ift is convenient,
therefore, to chose as the initial conditions fiight behavior for which the velo-
cities and accelerations are well known and in which the aircraft spends most of
its flight time. Equilibrium (unaccelerated} flight is flight along a straight
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path during which the linear velocity vector measured relative to a fixed space
is invarient, and the angular velocity is zero. "Steady flight" is flight dur-
ing which the Iinear and angular velocities in the Eulerian reference frame
remain constant. Hence, equilibrium fiight and flight with constant angular
velocity are both forms of steady flight.

Always acting on the aircraft even during periods of steady flight is grav-
ity. Since it is unidirectional, 11+ provides an orientation fo the motion. The
components of gravity acting along the steady flight aircraft axes relative to
inertial space can be determined from Figure A-6 by direct resolution of the.
gravity force along the xg, Yo, and zgy (steady flight) axes.

Equilibrium Axes=Eulerian Axes

Figure A-6. Gravity acting on an airplane In steady flight with initial
angles 65 and ¢, with respect to the gravity vector.

Thus,
Xo = =W sin B4
Yo = W cos 85 sin ¢,
Zo = W cos 85 cos ¢4 (A-13)

The components of gravity, acting along the disturbed Eulerian axes, are then
X3 = (-W sin 6,)cos 6 cos ¢ + (W cos 65 sin ¢ )cos O sin @

- (W cos B, cos ¢g)sin 6
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Yz = (-W sin 85)(cos ¥ sin & sin ¢ - sin ¥ cos ¢)
+ (W cos 65 sin ¢5)(cos ¥ cos ¢ + sin Y sin 6 sin §)
+ (W cos 84 cos ¢5)(cos 6 sin ¢)

Zz = (-W sin 85)(cos Y sin 8 cos ¢ + sin P sin ¢)

+ (W cos 8 sin ¢5)(sin P sin 8 cos ¢ - cos ¥ sin ¢)

+ (W cos 64 cos ¢p)(cos O cos ¢) (A-14)

The right-hand sides of Equations (A-8) express the aircraft acceleration
in terms of the linear and angular velocities. The left-hand sides of Equations
(A-8) represent the unbalanced forces (thrust forces, aerodynamic forces, and
gravity forces) which produce the airplane motion. The gravity forces have
already been expanded and transformed Yo the Eulerian axes (A-13); ideally, the
same procedure could be applied to the thrust and aerodynamic forces. Because
of the difficulty in expressing the aerodynamic and thrust forces explicitly in
ferms of the linear and angular velocities, it is customary to represent these
forces by Taylor series expansions, taking a sufficient number of terms to in-
sure adequate accuracy for the maneuver being considered.

Because of this special requirement, it is helpful to separate the aerody-
namic and thrust forces from the gravity forces, thus:

ZFX = ZF’X + X3

ZFy = ZF y * Y3

IF, = IF", + Z3 (A-15)

where the primed quantities are the summations of the aerodynamic and thrus+
forces, and X3, Y3, and Zz are the gravity components derived in Equations (A-14).
1+ should be noted that, if the instant under consideration occurs during the
steady flight condition, then 6 = ¢ =19 = 0, and the components Xz, Yz, and Z3
reduce to Equations (A-13). The force relations from Equations (A-8), with The
gravity terms fransposed fto the right side, are rewritten

IF° = m(U + QW = RV) - X3
EF°y = mV + RU - PW) - Yz
IF7, = m(W + PV - QU) - Z3 (A-16)

By substituting Equations (A-14) in Equations (A-16), Equations (A-8) may be
written

320



IF ., =mU + QW - RV) + (W sin 6,)cos 6 cos ¢
-(W cos 6 sin ¢o)cos 8 sin P + (W cos B, cos ¢)sin B

IF°, = m(V + RU - PW) + (W sin 85)(cos ¥ sin 8 sin ¢ -~ sin Y cos ¢)
-(W cos 8, sin ¢ )(cos Y cos ¢ + sin P sin 8§ sin ¢)
-{W cos B, cos ¢ )(cos 6 sin ¢)

IF~ m(ﬁ + PV - QU) + (W sin 6,)(cos P sin 6 cos ¢ + sin P sin ¢)

i

-(W cos 8, sin ¢5)(sin Y sin 6 cos ¢ - cos ¥ sin §)

-(W cos 6, cos ¢5)(cos 8 cos )

IL = Py - RIxz + ORIy, - L) = PQL,,
M = QLyy + PR(Ixy = Izz) - R?L, + P2Iy
IN = RI,, - PL, + PO(Iyy = Tux) + ORIyg (A-17)

These equations are then complete, except for the external forces and moments
on the left side, which include aerodynamic and thrust forces as well as moments
resulting from contro! surface deflections.

Definitions of the Eulerian axis system and the Euleriap angles, discussed
above, show that the rates of change of the Eulerian angles ¥, 0, and $ are not

orthogonal. The fixed axis angular velocities when written in terms of the rates
of change of +he Eulerian angles become

P=¢ -1 sin'd
0
R

6 cos ¢ + i sin ¢ cos B

Y cos ¢ cos & - 8 sin 9 (A-18)

Equations (A-17) match the aerodynamic and thrust forces acting on an air-
plane to the gravity and resulting Inertia forces. These equations are non-linear,
since (1) they can contain products of the dependent variables and (2) the depen-
dent variables appear as transcendental functions. The airframe motion can always
be considered the result of disturbances to the airframe from some steady flight
condition. Accordingly, each of the fotal instantaneous velocity components of
the airframe can be written as the sum of a velocity component during the steady
flight condition and a change in velocity caused by the disturbance:

U=Ug +u

V=Vg +v

W=W +w
O

321



P=P,+p
R = RO + r (A-19)

The zero subscripts of Equations (A-19) indicate the steady flight velocities,
and the lower case letters represent the disturbance velocities. By substituting
Equations (A-19) into Equations (A-17) and noting that derivatives with respect
to time of the steady state conditions are zero, Equations (A-17) become
ZF = m[i + QoWp + Woq + Qow + wg
- RoVe = Rov = Vor - vr
+ (g sin 8g)cos 8 cos Y - (g cos 65 sin dplcos 6 sin Y
+ (g cos 0, cos dg)sin 6]
EF7y = m[V + UgRg + Ugr + Rou + ru = PoWg = Pow = Wgp
- wp + (g sin 6g)(cos ¥ sin 6 sin ¢ = sin Y cos ¢)
- (g cos 85 sin ¢g)(cos Y cos ¢ + sin P sin O sin ¢)
- (g cos 8, cos ¢y)lcos © sin ¢)]
TF”, = m[W + PoVg + Pov + Vop + pv - Qolo = Qou = Uog - qu
+ (g sin B,)(cos ¥ sin O cos ¢ + sin Y sin §)

- (g cos B85 sin ¢5)(sin Y sin 6 cos § - cos Y sin ¢)

- glcos €4 cos ¢g)(cos 6 cos ¢)]

IL = pIyy - rT . + (QoRy *+ Qor + Roq + ar)(Izz = Iyy)

X2
- (PoQo + Poq + Qop + pa)Iyz

M= éIyy + (PR + Por + Rop + pr)(Iyy - Izz)
- (RG? + 2Rgr + r2)Iy, + (P2 + 2Pgp + p2)Iyy

IN = FT,5 - plxz + (PoQo + Pod + Qop + p)(Tyy = Txx)

+ (QoRo *+ Qor + Roa + griiyy (A-20)
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Assumption V The disturbances from the steady

flight condition are assumed to
be small enough so that the pro-
ducts and squares of the changes
in.velocities are negligible in
comparison to the changes them-
selves. Also, the disturbance
angles are assumed to be small
enough so that the sines of
these angles may be set equal

to the angles and the cosines
set equal to one. Products of
These angles are also approxi-
mately zero and can be neglected.
Since the disturbances are small,
the change in air density en-
countered by the alrplane during
any disturbance can be considered
zero.

If Assumption V is applied to Equations (A-20), they become

IF "y

ZF°

IF”

zL

IM

ZN

m{d + QoWo + Woq + Qow - RoVg = Rov - Vor

+ g sin 8 - (g cos 65 sin ¢l + (g cos 65 cos ¢o)6]
m[v + UsRo + Uor + Rot = PoWo = Pow = Wop

- (g sin 6y - g cos 65 sin ¢ =~ (g cos B, cos b))
mW + PoVo + PoV + Yop = Qoo = Qou = Uog

+ (g sin 8530 + (g cos Bp sin ¢5)d - (g cos O, cos ¢o)]
pIxx = Ixz * (QoRo + Qor + Ro@) (Izz - Iyy)

- (PoQo + Pod * QoP)Ixz

alyy + (PoRo + Por + Rop) (Inx = Izz)

- (Ro® + 2RgMIy, + (Po% + 2Pop)Ixz

rIzz - PIxz + (PoQo + Poq + QoP) (Tyy - Ixx)

+ (QoRo + Qor + Roq)Iys (A-21)

Equations (A-21) limit the applicability of the analysis to so-called small
perturbations.
cable only to infinitesimal disturbances; however, experience has shown that

quite accurate results can be obtained by applying these equations to distur-
bances of finite, non-zero magnitude. An additional application of Assumption

In the strictly mathematical sense, Equations (A-21) are appli-
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V is the reduction of Equations (A-18) to

P=3¢ - y6
0=6+up
R=1v- 60 (A-22)

If the products of perturbations are neglected, the above equations are
reduced o

P=b
0=6
R=1 (A-23)

Equations (A-23) show that, within the limits of small perturbation theory, the
instantaneous angular velocities P, Q, and R may be set equal to the rates of
change of the Eulerian angles.

Assumption VI During the steady flight condition,
the airplane is assumed to be fly-
ing with wings level and with all
components of velocity zero except
Uo and Wy. Thus, Vo = Py = Qg =
Ro = ¢o = Yo = 0.

Assumption VI reduces the equations of motion 1o

IF”

x m[ﬁ + Woq + g sin 8, + g cos 8,]

™
T
AY

n

y m[& + Uor - Wep - gt sin 65 - g¢ cos GO]

TF’, = mlw - UoG + g8 sin 6, - g cos 85]

IL = pIxx - Flyy
M = gl
IN = rT,, - plxz (A-24)

The aerodynamic forces and moments are then expressed in coefficient form as

L = C pV?S = Lift
D = CpipV?s = Drag
X = Cy4pV2S = Aerodynamic Force Along x Axis
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Y = cy%pvzs = Aerodynamic Force Along y Axis
Z = C,4pV35 = Aerodynamic Force Along z Axis
L = C}4pV2Sb = Rolling Moment
M = CpipV2Sc = Pitching Moment
N = C,£pV2Sb = Yawing Moment (A=25)
where
S = Wing Area
¢ = Mean Aerodynamic Chord = The wing chord which
has the average characteristics of all chords
in the wing.
b = Wing span

The 1ift and drag are the forces acting normal and parallel respectively to the
flight path.

As noted previously, each of the forces and moments can be expressed as a
function of the variables by expanding the forces and moments in a Taylor series.
The series has the form

F = Fo + (3F/3a) o + (3F/3B) B + (BF/38) 8 + ... (A-26)

where o, B, and § are variables, and the subscript zero indicates that the
quantities are evaluated at the steady flight condition. In Equation (A-26),
terms of the order (92F/3a2)(a?/2!) and all higher order terms are omitted in
accordance with Assumption V. Before expanding each of the forces and moments

in the above form, a simplification can be made. Because the xz plane is a

plane of symmetry, the rate of change of the X and Z forces and the moment M,

with respect to the disturbance velocities p, r, and v, is zero. Thus, the forces
and moments acting on a disturbed airplane can be expressed

_ 3X 3X - . 3X 9X . . X . 38X . . 93X
X = Xg + By u + e U + 3q q + 58 q + o YR + EEE Sg
PR e B F L B 4 X g
3dg 38k 98F 38k
Y=y, + &+ 2 Ay oy 9%-0 PREAGEN §¥-5 PRA Sp
or ar v v ap ap adp
PR AR SR A S QI;_5R + §¥;-&R ¢ 2L 8
a8y 38, 38R 38 36,
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z, + %y + 82§ 4 32 8 5+ 32, L 32, ¥ 4

Z= - g+—]/—qg+=w W E
ou au aq 9q ow ow o8
+ 22 8+ = 92 S+ 5 422 3
BGE dSE LIS a8k
L=Lo+£r+a—.'=F+iv+§:l=\;+§Lp+§—l_‘-;’>+§L—6A
or or v oV ap ap LYY
a8, BGA BGR BGR LIS
M= Mg +3—Mu+§¥ﬁ+a—Mq+-a—l\.4—<'q+Mw+a—'\.4W+a—M—6E
Ju ou aq aq ow aw 3SE
: 5E+3_.“{|_'6'E+3L5F BMS
98 CNS I8 BSF
N=NO+§'llv+§ﬁ\'/+aN PN N AN s N
ov oV or or op op adp
+3¢5R+ﬂ—§ + S5, + a':’ n§A+a!\_l SA (A-27)
where
GE = Angle of deflection of elevator
6F = Angle of deflection of flaps

Sp = Angle of deflection of ailerons

Angle of deflection of rudder

The thrust force previcusly mentioned in Equations (A15) can be introduced
intfo the eguations of motion in much The same way as the gravity force was intro-
duced. The thrust in considered fo be a function of the power plant revolutions
per minute and the forward speed of the airplane. With the power plant located
in the plane of symmetry, the thrust contributes to the X and Z forces and to the
moment M. With the aid of Figure A-7, it is evident that, by setting the steady
flight thrust equal to T, the equations for the steady flight condition become

Xo = Tg cOs &
Zo = - Tg sin &
Mg = To Z; (A-28)
where & = angle between x axis and thrust line
z; = perpendicular distance from ¢.g. to

thrust line
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Figure A-7. Thrust force retationship to X and Z forces and moment M.

Since the Eulerian axes remain fixed with reference to the airplane during a
disturbance, the thrust components relative to the disturbed axes become

X =Ty cos &

Z = - Ty sin &

M= T1 ZJ- (A-29)
where Ty (the thrust during the disturbance) = T, T AT

If a Taylor series expansion is assumed, then

AT = 2Ty 4 3T

Thus,

X=T_ cos & + (cos &) EI-u + {cos &) 3T &

° du 38gpy RPM

. . T . oT
Z=-T, sin - (sin &) =—u - (sin &) == §
o) g E Bu E BGRPM RPM
= . 9T aT -

M= To Z; + Z; " u + Z; BéRpMGRPM (A-30)

The individual contributions to the equations of motion have now been exam-
ined in some detail, giving perhaps some insight into The basis of the complete
equations of motion of the airframe. Before continuing, however, it is well to
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note that the equations for steady flight can be found by substituting the steady
flight values of the aerodynamic, weight and thrust forces and moments into Equa-
tions (A-24) and setting the disturbance terms equal to zero:

The equations of motion for
The disturbed values of the

m[l + W.q ++

- Wsin 8, +

+

+

+

+

To cos &
0

T, sin &
0

T~ Z5

o “J

0

0

0

0
0

(A-31)

the disturbed airplane are then found by substituting
forces and moments into Equations (A-24):

g cos GO] .+—-u +—.-u

+3—Xq+3>fa+a—xw+-a-.—w axX_ 8p + 3X8+ax ;§E+ Sf
3q 34 Bw w35 a8 36 38F
+ X5 4 To cos E|+ (cos &) 3T 4 + (cos £€) ar SRPM
88 du 98RpM
m[y + Usr = Wop - g¥ sin 8, - (g cos eo>¢] =| Yo |+ AR @z.} PAGN
or or v
PRLY LAY 5 B BY g DY g DY F L BY g BY 3oL BT
v % 3p 35, I 38, 38R 3dg asR
m[w - Uoq + g8 sin 85 -|g cos B4 ]= Zo1+ 3y 4 Q%—& + QZ-q + QZ—q
ou ou ag aq
+3_Zw+3—%;4+—_32 5E+—a? éE 3z SE + 22 6F+—B% éF
ow ow Sk o8 BGE a8 o6F
=[T, sin &l = (sin &) 3Ty - (sin £) ar GRPM
ou 98ppy
PL,, ~ MLy, -+ r+3Lr+3Lv+3Lv+3Lp+3Lfy+3L6
or ov v ap Bp BGA
+§_‘.:_(§A 3_}:_§A+3_'—_6R+8|; 6R+3L6
adp LN 30R 38y Idp
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: aM ° oM - . :
quy =[::+—--u + ay o+ M q + v q+ = BM + §¥-w + M GE =— &g

du ou 9q 3q Bw ow o8 BGE
oM % aM oM & aT aT
+ S + S + 8 T +z; 2y +z,. 2L 0§
5, E F F oo %)™ 4 J RPM
38y oSk BGF C:l du 3SRpM
: : N aN = | 3N oN = 9N oN = |, 9N
rI,, = pLy, S{NJ+ &= v+ =v+E=r+=r+=p+5p+—386
i oV ov or or op ap 38 R
+ A8 428+ Mg, LA F 42T, (A-32)
86R BGR 86A BGA BGA

The quantities in boxes disappear because of the steady flight conditions of
Equations (A-31). Dividing the force equations by the mass m and the moment
equations by the appropriate moments of inertia yields fterms of the form

19X u and —— 1 oL r
m ou I or

Replacing (1/m)(3X/3u) by X, and (1/I,,)(3L/3r) by L. simplifies the notation.
These quantities are called either "dimensional stability derivatives" or simply
"stability derivatives." By eliminating those terms whose sum, in accordance
with Equations (A-32), is zero because of the steady flight conditions, and by
using the previous shorthand notation, Equations (A-32) are reduced fo the form:

U+ Wog + g6 cos 85 = X,u + X°u + qu + qu + Xyw + wa + XG Sg

+ Xa 6 + X5 5 + X5 GF + Xs GF + cos & T u + cos & TSR MGRPM

vV + Uy = Wop = g¥ sin Bo - gb cos B, = Y.r + Ypf + Y v+ YoV

+ Ypp + Ypp + Yg,84 + Y5A6A + Y5A5A + Yapdr + YéRGR + YSRSR

W - Ugq + g0 sin 65 = Zyu + Z50 + qu + Zaa + Zyw + Zw@ + ZGESE

+ ZBEGE + ZSESE + ZGFGF + 25F6F - {sin £)Tyu - (sin E)TG PMS PM
. . ]: -
p-r fii-— Ler + Lpf + Lyv + Lov + Lpp + Lpp + LgpSa + LgAGA

+ LaAGA + LG SR + LG 6R + LGRGR
q = Myu + Mgd + Mqg + Maq + MW+ Mow + Mg + MéEaE + MgEcE

+ MGFGF + Mg GF + —J—-T u + Iﬁ;’TGRPM

I
Yy
F-p %fi.‘ Nyv + va + Ner + Np*o+ Npp + Npp + NGRGR + NG 6R
+ N5R6R + NﬁAGA + N6A5A + NaAGA (A-33)
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Assumption VII The flow is assumed to be
quasi~steady.

Because of Assumption VII, all derivatives with respect fo the rates of
change of velocities are ommitfed, with the exception of those involving w,
which are retained to account for the effect on the horizontal tajl of the
downwash from the wing. It should also be pointed out that the change in
angle of attack can be approximated by Aa = w/U.

The only restrictions thus far imposed on the orientation of the Eulerian
axes with respect fo the airplane are that the y axis be a principal axis and
that the origin be located at the center of gravity of +the airplane. When the
X axis is oriented so that it is a principal axis, the Eulerian axes are re-
ferred to as principal axes, but when the x axis in the airplane is parallel
to the relative wind during steady fllghT the Eulerian axes are referred fo
as stability axes. When the airframe is disturbed from the steady flight
condition, the Eulerian axes rotate with the airframe and do not change direc-
tion with respect to the airplane. Consequently, the disturbed x axis may
or may not be parallel to the relative wind while tThe airplane is in fthe
disturbed flight condition. It should be noted that for small angles of
attack the moments of inertia about the stability axes are approximately
equal to those about the body axes; however, at low speeds (high angles of
attack) the moments of inertia about the stability axes can differ significantly
from those about The body axes and this fact should be considered in dynamic
analyses. The use of the stability axes eliminates the terms containing Wgq
from Equations (A-33) by eliminating the following quantities: (1) all terms
containing W,, which disappears because of the direction of the stability
axes; (2) all aerodynamic partial derivatives with respect to rates of change
of velocities, except those with respect to W; and (3) all aerodynamic partial
derivatives with respect to rates of change of control surface deflections.
Equations (A-33) then reduce to Equations (A-34 and (A-35). To avoid confusion
with body axis coordinate systems, where 85 is the inclination of the x axis
with respect to the horizon, the angles between the horizonta! and the x
stability axis is called Yo- T will be recognized that because of the way
the stability axis system is defined vy, is indeed The angle of the flight path
with respect to the earth.

u+ g6 cos v, = Tylcos Elu + TGRPMGRPM cos &

T XQU ot Xga ot Xw o Xgw X6E5E + XGFéF

w - Usq + g0 siny, = - T,(sin &u - TGRPMGRPM sin &
+ Zyu + Zgq + Zw o+ Zgw + ZSESE + ZGFéF
A ;2 +
q Iyy T u Iyy T(SRPM(SRPM Myu + qu + Myw
+ Mgw + M5E6E + MGFGF (A-34)
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<
+
(o=
=
[

o g¥ sin Yo ~ gd cos yg = Yer + Y,V
+ Ypp + Y&SAGA + YGRGR
-Ixz 2o Ler + Lyv + Lpp + LGAGA + L6R5R

Te
S5
!

H
X
N

)

= Ner + Nyv + Npp + NGAGA + NGRSR (A-35)

An examination of these equations shows that Equations (A-34) are functions
of the variables u, 6, and w, whereas Equations (A-35) are functions of the var-
jables v, r, and p. As a result of the assumptions made in this analysis, the
equations of motion can be freated as ftwo independent sets of three equations
with Equations (A-34) describing the fongitudinal or x-z plane motions and
Equations (A-35) the lateral motions.
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DEFINITION OF STABILITY DERIVATIVES

In this appendix the dimensional stability derivatives which appeared
in the equations of motion are defined. For each dimensional stability
derivative an equation is given which, for the most part, relates it to a non-
dimensional derivative thus simplifying the evaluation of the dimensional
derivatives.

Longitudinal Stability Derivatives:

u m Z du
oC
- puUs, _uc°-L
ZU m 2 du CL)

Ly
T, = 25 CT 4 o)
m
3C
x, = BUS¢c, _ 2D,
W 2m P}
ac
7 = PUS._ °-L _
W Zm o0 CD)
M, = pUSc 9Cn
ZIyy o0
Xo = - SC 8CD ~ o
o
20
pSc 9CL
Ze = = —
W am 50
20
M‘;I = QSC2 Bcr.n
Alyy 58
2
Xq - 435C aCDC 0
a(gU>
z, = - gﬁSc 3C
m C
JEi)
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Mq - 9U802 9Cp
41 gqc.
Yy B(ZU)

Te . 30 pUsc oCr
SrPM m 30c s
T SRPM
e = . BU%s 3D
GE - 2m BSE
S . _ pUs 3L
S 2m BGE
Mo = QUZSC aCm
e " 21, 8¢
wo = - PUZS 3D
Sk 2m a8
o - _ puZsc BCL
SF 2Ty

Mg = pu2sc 3Cp
Foo21,, 96F

Lateral Stability Derivatives:

v - pus %y
v T 2m 3B
L - pusb 9Ce
v T 2T, 38
LB = UOLV
N, = QUSb 9Cn
, =
21,, 98
NB = UONV
pUsb 9Cy
Y =
P Am 5 Rb,
2U
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Ly = pusb? 9Cy
4lyx  5(BR
35

N. = Pusb? 3Cn
41 pb.
2z 35

y_ - BUSD 3Cy
F 4m 5 rby
20

L - pusb? °C;
-
4Lyx 3(594
2U

U v
r

z7 3(2U)
ve = 0U%S Cy

GR 2m 36R

L. = BuZsb Cy
SR~ 2Ty 98R

Na = pU2sb 9Cp
SR T 2I,, 38R

v. = 0uts 3y
6A 2m BGA

L o puZsb
Sp T 2L, 235,

_ pu2sh 9
A ZIZZ aGA

It should be noted that derivatives with respect to angles or rates of angular
change are defined per radian.
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DERIVATION OF THE TRANSFER FUNCTIONS

Equations -(A-34) and (A-35) from Appendix A may be converted by the use of
determinants into the transfer functions considered earlier in this study.

The angle of attack and the angle of sideslip can be written in approximate
form based on the veloclity components and fthe perturbation velocity components:

Ao, = ¥
Uo
The angle between the equilibrium flight path and the disturbed flight path is
defined as . It should be pointed out that only when E equals zero is the
sides!ip angle B egual to the negative of the yaw angle.

The longitudinal equations can be written by modifying Equations (A-34),
as shown below:

0 - Xyu - (Tycos Elu = X _q + gBcos Y, = XpW = X,w

g
= X5E6E + TGRPMaRPM + X6F6F

-Z,u + (T sin &u - Uyg - Zqq + gbsin v, + W - ZoW = Zyw

= ZﬁESE - (TsRPMSin E)SRPM + ZaFGF
zm ]
Myu - =T u + § - Mgq - MgW = M,w
Iyy Z.m
= Mg Sp + =T _ 6 (c-1
Og I, °RPM RPM

The latera! equations of motion, Equations (A-35), are rearranged by substititing
BU for v and dividing by U,. Thus,

. Y Y
- - -P_ g N SFU Y« R
B - Y,B Uop (U cos Y )¢ + r ™ (U sin Yo ¥

O o o
Y Y§
- OAs, + ORs
UO UO
L] I .
-LgB *+ p - Lp - ZH - Ler = Lg Sy + Lg O
PT T A R
IXZ. -
'NBB - T;;p - Npp +r - Nr = N6A6A + NGRGR (C-2)
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The right sides of Equations (C-1) and (C-2) are the control forces and represent
the means by which either the human pilot or an autopilof can control the motion
of the airframe. The thrust and the control surface inputs are the forcing
functions which determine the resultant motion of the airframe. Since the air-
frame equations of motion are linear equations, the principle of superposition
may be used to obtain a solution. For instance, the response to simultaneous
application of elevator and rudder deflections can be determined by calculating
the response to each of these deflections separately and then adding the results
to complete the solution.

The transfer functions are obtained by applying the method of Laplace trans-
forms. |[|f Equations (C-l) and (C-2) are ftransformed info the Laplacian domain,

[s - Xy + ADJuls) = (sXg + X, )W(s) = (X, = gcos v,)8(s)

= XGEGE(S) + B’sRPM(S) + XGFGF(S)

_{Zu - CMuls)y + [st1 - ZW) - Zw]w(s) - [S(Uo + Zq) - gsin Yo]e(s)

= 26E6E(S) - D’GRPM(S) + ZSFGF(S)

=M, + EDuls) - (sMy + M)uls) + (s® - M s)8(s)
= MGESE(S) + F’SRPM(S) + MGFGF(S)

Y Yr .
(s - YV)B(S) - (SUE-+ ﬁ;cos Yo)¢(s) + [s(1 - U;) - ﬁgﬁln Yo]w(s)

1
= [Ys §,(s) + Yg 8p(s)] —
S A SRr°R Ug

-L.B(s) + (s? - sL)d{s) - (Ays? + sL_)U(s)
R p 1 r

= L6A5A(S) + LSRGR(S)

—NBB(S) - (8152 + sz)¢(s) + (s? - sNr)¢(s)

= NGAGA(S) + N5R6R(s) (C-3)
where z:m
A” = Tycos & F* = EJ_TGRPM
B’ = T5RPMC°S E vy
C” = Tysin & A - Iyz
D™ = 1§$PMS|n £ IXX
E” =2l By = Iz
lyy T2z 339



ly.

It should be noted that p, g, and r were replaced by ¢, 8, and ¥ respective-
This is permitted because of the small perturbation approximation. Using
Equations (C-3) and Cramer's rule for solving equations by determinants, the
longitudinal transfer function for U(s)/§g(s) with 8-=0 and Sgpy=0 can be

written
XSg -(sXy + X)) -(sXq - gcos Yg)
ZGE [st1 - za) -2,1 -[stu, + Zq) - gsin v]
M ~(sMe + M) (s? - M_s)
u(s) _ % i N g _ Nu/8Eg
[s - (X, + A )] -(sXp + Xw) -(sXq - gcos Yy)
-(Z, - CM [s(1 -z =21 -[stu, + zq) - gsin yo]
-M + ED -(sMg + M) (s? - M_s)
u W 9T c-n

The denominator determinant is the determinant of the homogeneous equations de-

noted by Dy.

Dy

where A

B

C

The expansion of Dy gives

= As* + Bs® + Cs?® + Ds + E,

-(1

(X,

+

(C-5)

Zp [y + AT + MoT = Z, - My(Ug + Zg) = Xg(Zy - C7)

A’)[Mq(1 = Zgy) + Zy A MpUg + 2] - My + ENX(Uo + Zg)

+ Xgqt1 =~ Z,0] + MZw *+ (Zu - CHIMgXg = Xw) = XqMy]

+ Mpgsin vq = MylUg + Zg)

gsin yoLMy + EdXg + M, = Ma(Xy + AD] + geos yo[(z, ~ CIM,

+ My + EDC = Z) ]+ vy + EDLX U + Zg) + ZuXg]

+(Zy - CDIXMg - XgMwl] + Xy + ADIM (UG + Z) - MgZ,]

geos YoM, (Z, ~ CT) - Z, My + EN]

+gsin y LM, + EDX, - X, + AOM,]

The numerator determinant is expanded in Equation (C-6):
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Ny/8p = Ays® + Bys? + Cys + Dy (C-6)

where Ay = X5E(1 - Zy) + Z3eXw

By = ~XGE[<1 - ZiMq + Zy + Mgy + Zq)]
+ 26 XMy = XMg + X,
+ M DXty + Zg) + 1 - Z)X,]

(@]
cC
!

= X§elMgZy + Mggsin vg = My(Ug + Zg) ]

+ Zg[xMy = Mggeos v, - XyMg]

+ MSE[—Xwgsin Yo + XyWUo + Zg) = (1 = Zgdgeos Yo = Z,Xq]
Dy = XsE(ngsin Yo) - ZaE(ngcos Yo)
+ M@E(ngcos Yo = Xwgsin vg)

Simifarly, using the approximaticn discussed at the beginning of this appendix,
Aa(s)/S8p(s) can be writften w(s)/UsSg(s), as seen below:

[s - Xy + A°)] XGE/UO —(sxq - gcos Yg)
(Zy ~C") Zgg/Uo  ~[sUy + 2) - asin v,]
(M, + E) Mg _/U (s? - M_s)
bals) _ | e 9 1 Ny/Se
(SE(S) - D1
Dy
Ng/8g = Ays® + Bys® + Cys + Dy (c-7)

where A = ZSE/UO

By = (Xgg/Uo)(Zy - C7) + (Zgg /UM - Xy + ATI] + (Mg/Uo) (Ug + Z)
Cy = Xeg/UOLW, +Z )My + ET) = Mg(Zy - €]

+ (ZGE/UO)[Mq(XU + AT = (M + ETIXq]

+ Mep/U DX Z, = C7) = gsin v, = (Ug + Z) (X, + AT)]
D, =

w = (-X§p/Uad My + ET){gsin vy) + (ZGE/UO)(MU + E”)gcos v,

+ (M5E/Uo)[(xu + AT)gsin v, - (Z, - C")gcos vl
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also,

[s - X, + AD]  —(sXy + X)) X8
-(z, - € [st1 -z - Z,] Zse
-(M, + E) -(sMg + M) M
o(s) _ |- v %E|_ Nesse
Sg(s) D1
D4
NG/SE = Aesz + BeS + Ce (C-8)

where Ag = ZSEMW + MaE(1 - Zg)
Bg = XaE[(Zu - COOMy + (1 - Zpd My + EDY]
+ ZGE[MW - Mg (X, + A7) + My + ET)Xg]
+ MaE[—Zw - (1 = 2o Xy + A7) = Xp(Z, - CN]
Cp = XaE[Mw<Zu -C") - Z,My + END]
+ Me Lz, Xu + A7) - X,(Zy - €]
+ Zg LMy X + A + X, My + ED]
1+ should be noted from the mechanics of The above derivation that, had
it been desirable 1o derive the transfer functions for any one of the other
control inputs, it would have been necessary only to replace 8g by The appropri-
ate derivative whenever Sp appeared in the transfer function. This knowledge
can also be applied to the lateral transfer functions about to be derived. To
make the following fransfer functions applicable to aileron deflection S8y instead

of rudder deflection &g, it is necessary only fo replace Sg by §p whenever SR
appears, and to replace YSR, LGR’ and NGR by Y5A’ LGA’ and NGA respectively.

Following this approach, the lateral transfer functions for rudder deflec-
tions, (8p=0), became:
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% (s + S S (ST SR B
UO - SUO UO oS YO S - UO - UO In 'YO]
Lsg (s? - sLp) -(Ays? + sLp)
Nsg -(Bys® + sNp) (s® - sN.)
B(s) _ ) _ Ng/8R
85 (s) § v, D,
(s = Y,) —(SUE-+ 85005 Yo) [s(1 - u;) - ﬂgsin Yol
-Lg (s - sLpy) -(Ays® + sLp)
—NB —(B1s2 + sz) (s? - sN.)
D, = s(As" + Bs® + Cs?® + Ds + E) (C-9)
where A = 1 - AB;
B = -Y,(1 - ABy) - L - Np = AjNp = ByLp
Y Y
C = Ng(1 = 2 + Lp(Yy + Np) - U§<A1NB + Lg) y
+ NpCATYy = Lp) + Yy(Bilp + Np) + LgBi(1 - Ug)
Y Yp :
D = -Ng[(1 - Ugotp L, + A]ﬁgcos Yo + 51N Yol
I
N Lt - g + Yylre] = LoNLY,,
Y
+ LB[NFU% - ﬂgcos Yo - Bﬁgsin Yol
E = fiocos v (LNr = NgLp) + gsin Yo(Nglp = LgNp)
= 3 2
NB/GR = S(ABS + BBS + CBS + Dg) (C-10)
here Ag = (1 - A;B IR
where B = 151 Uo

Y6R Y Yr
Bg =g [-Lp = Nr - AINp - ByLc] + LGREd% - B(1 - g)]

Y Y
+ Ny [A1U§-— (1 - Ugo]
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Cg =-———[L N - Nl T + L5R[g—cos

+ B1g—s:n Yo] + N5 [ L + A18~cos Yo L (

+9——sm Yol

Dg = L5Rﬁ—[ -Nycos ¥o + N sin ]

p
+ NGRﬁg{LFCOS Yo Lpsin Yo]

Y
- N2
Yo = Nrigg

Yr
- N (1 - US)

Y(S Y
R r .
(s -Y) =R a--5H-85
s v Ug [s Ug Ug in Yo]
-Lg LGR —(A1s2 + er)
-N Ng (s? - sN.)
d)(S) _ B R rf N N¢/6R
Do
- 2
where A¢ = LG + NGRA1
By =-—J3(LB + AIN) + Lgn (-Np = Yy) + Ngo (L = ApY)

U__[+L Ng - LBNr] + LeglYUNr
+ N5R[ Lg(1 - -4 - Yylp]

@]
o
I}

Dy = (Ng_Lg - LGRNB) - %gﬁln Y,

+ Ng(1 - va]
O

Y Ys
- (P R
(s YV) (sUO + ﬁ;cos Yo) Ug |
-LB (s? - st) LdR
-N -(Bys? + sN.) N
s P ‘ P o) Ny/Sg
D,
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Ny/8g = Ays® + Bys® + Cys + Dy,

(C-11)

(C-12)



where Aw = NGR + B1L6R

YgR

YoR, NaL.) + La (P YN
O Lghp ~ Nglp) + Lep(g g = YNy

Y
+ Ngp(LoYy - UﬁLB)

Cy

f

Dy

(LagNg - N5RLB)%;cos Yo

The above transfer functions completely describe the airframe within The
limits of the assumptions made in Appendix A of This study.

By substituting jw for s the transfer functions are fransformed into the
frequency domain. }f one then writes the numerator and denominator each as a
magnitude and phase angle and plots the ratio of magnitudes and the difference
in phase angles against frequency, the results indicate the magnitude and
phase relationship of the aircraft response fo a sinusoidal control input of
unit magnitude at any given frequency. These "Bode" plots are quite useful
in visualizing frequency regions of excessive aircraft response (regions of
poor damping), the frequency above which aperiodic motions decrease rapidly
in amplitude, frequency regions which should be avoided by structural and
control system resonances because of the possibility of coupling, and, if
measured in flight, the presence and effect of non-linearities. Control sys-
tem and autopilot designers find such plots particutariy useful when the
scales are logarithmic since among other advantages the amplitude of the ac~
tual aircraft response is merely subtracted from the desired response to find
the effective transfer function which the autopilot or control system must

supply.

The denominator of the transfer function is the Laplace fransform of the
characteristic equation of the system. |1 can be fthought of as representing
the general solufion In the mathematical sense, for the response of the system.
The numerator terms, combined with the time history of the control surface mo-
tions, are responsible for the particular solution. To obtain the time history
of the response fto a particular control surface input it is necessary fto obtain
the inverse transform of the transfer function. Fairly extensive tables of
Laplace transforms are available and the proper form can often be found there-
in. It may, however, be necessary to perform a partial fraction expansion to
reduce the transfer function to a sum of simpler functions whose inverses do
appear in a fable. For details, the reader is referred to a standard text on
control system design such as Savant (Ref.100).
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SIMPLIFIED RESPONSE CHARACTERISTICS

The equations developed in Appendices A, B, and C, although already |inear-
ized, are still difficult to solve by hand. (For those with digital computer
facilities, the programs presented in the present report may be used to obtain
time sotutions to the complete system.) For preliminary design purposes it is
desirable to be able to make rapid, approximate calculations of the effect of
geometric or loading changes on the dynamics of the aircraft. |+ is therefore
of interest to determine the extent to which the equations and their solutions
can be simplified before the characteristic behavior is lost.

In this connection, it is convenient to assume that

» Zig Xog Loy X 3 Xg 5 Zs 5 Xg s+ My , Z_, T , and Ts =0
Y e - e RPM

it has long been common knowledge that for the longitudinal case the phugoid os-
cillation is accompanied by litftle or no change in vertical velocity while the
short period oscillation takes place at constant speed if the magnitude of the
pitch angle change is kept small. This suggests that the general three-degree-
of-freedom system can be approximated by two two-degree-of-freedom systems.

Y

Equations A-34 may be written
0+ g6=Xu+Xw
u w

N - = 8
W qu Zuu + wa + 73E £ P

1]

q Muu + qu + Mww + MWW + M5E5E .

1T should be noted that the pertubation velocities, i.e., u, w, and qg,are
zero when the unperturbed variable Is constant during a particular maneuver.
Taking advantage of this fact, one finds that the system (!) reduces to three
equations in Two unknowns, one equation of which is therefore redundant. For
the short period approximation, the equation describing linear acceleration
along the x~axis is redundant. (The acceleration is zero and the remaining
forces reduce to an identity.) Similtarly for the phugoid case, the equation
describing pitch is redundant.

M $
W qu wa + ZSE £

. . (2)
q _qu+MWW+MWW+M6EGE

for the short period mode
and

(3)
for the phugoid mode.
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Equations (2) and (3) have been written to reflect these considerations.
Transformed to the frequency domain these become

(s - Zw) wis) - sUOB(s) = Z6 GE(S)
5 E 4)
(s - qu) e(s) - (MWS + Mw) wis) = M6EGE(S)
short period
and

(s - Xu) u(s) + go(s) =0
(5)

-Use(s) ~ Zuu(s) = ZGESE(S)
phugoid.
Substitution of the first equation of (4) into the second yields

(MW+M6 )s + (MwZG -Ms Zw)

8 _ E E E
= = (6)
E  s[s™-(Z M +U M.)s + (M Z -M U )]
w g oW qgw wo

The oscillatory roots of the denominator of (6) describe the short period damp-
ing and frequency. Since in general the transfer function of an oscillatory
mode can be described by

|
2 2
s +2tw _stw
n n

it is readily seen that the frequency of the short period mode is given by

w =z -mu? (7)
n qw W O
sp
while tThe damping ratio is
Uon + Zw + Mﬂ
Csp = - 7 (8)
n
In terms of the stability derivatives, (7) and (8) may ??zwriTTen
2C
m
w ~ PUSC | 9~ ¢ - __° (9)

nSp ZVT;;' 2W La mq pSc

2 Cm I
~_ PSUc q _ _Vyy
AT Cm. t — 5 gCL (10)
sp yy n a We a

For the equivalent values from the phugoid approximation one solves equations
(5) for
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= (1n

Uo
from which it is apparent that
_ Zyug _ Qng .
Wy, = Y- D CL = 1.4 g/U, (12)

[t
1}

X
R Ty = 0.707 & (13)

The approximate lateral-directional characteristics are obtained in a simi-
lar fashion. The reader will recall that the solution of the second equation
of A-35

p=Lpp + Ls, A (14)

for motion restricted to that about the x-axis is given on page 137 as

[ CRE bzq Sw %
] - e

Ce 2U
b= -8y Ugp ol Dxx (15)
Co, D Co_ b%aSy
U1,

The first term is the steady state portion of the solution and the fime required
for the transient solution to attain 63% of its final value is

1 d (16)
Tp = = ~————————
R C1 5705, Ug seconds
The Dutch roll is assumed for purposes of approximation fo consist of a

yawing motion about the z-axis. Thus the motion lies entirely in the x-y plane,
i.e., the bank angle remains constant and there is no L, V, or Ly. With the
additional assumptions that V = UgB, and r = ¢, ¥ = -B, Y§g and Yr = O.
equations A-35 reduce to

B - N-B + N,UB + NGrGr =0, (17
which when transformed becomes

(s? = Nps + NyUg)B(s) = - Ngrér(s); (18)

thus
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12 _ ,bpSu? 1,2
= (NJUS2 = Cg) (19)

ng 217z
___Nr pSb® 1.2 Cnr
Sd T 2N U E T '(2122’ Cng (20)

Unfortunately, the spiral mode is not readily approximated with accuracy by
a one-or-two-degree-of-freedom system. However, by discarding small quantities
from the general fifth order characteristic equation of lateral motion and
grouping the remaining terms to match the expansion of

s(s + ,—1[;)(5 + %E)(sz + 2Cwns + wp?)

Ref. 17 was able 1o show that

o x AW Cogopny * 5 2008 * TsiT 2 (21
S .

Cnsclr - CRBCnr

Note that unless.The yaw damping and the side force due fo sideslip are both
very large numerically, the first term in the numerator may be neglected. At

cruise, the last term is generally about 1072 times the second term so that one
commonly sees

) CapCng
s =

-C

9 \Cngle,. ~ Cagln,

The stability of the spiral mode may be deduced by examining the sign of the

net denominator since the numerator will almost always be negative. Cp,. by de~
finition is negative while Cy. is positive. The sign of Cgg depends upon the
dihedral angle but the aircraft is usually configured so that Cgg is negative.
Cng depends upon the area distribution in the xz plane but is usually positive.
Thus, if CgpCny is larger than CngCr, the aircraft will be spiraliy stable. It
should be noted, however, that the geometfric changes needed to improve spiral

stability will usually result in poorer Dutch roll performance so that some com-
promise is necessary in the absence of an artificial stability system. Usually
one will opt for a very slightly unstable spiral mode in order to obtain satis-

factory Dutch roll performance.
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USE OF THE NON-LINEAR FORM
OF THE EQUATIONS OF MOTION

There are occasions in the analysis of flight motions when one would wish
to study large departures from equiiibrium, circumstances where the aerodynamic
forces and moments are highly non-~linear, and the rare situations where there
is extensive directional-longitudinal cross-coupling. The general equations*
of course describe these situations as well as they do those involving small de-
partures from equilibrium. There are, however, no extensively-developed tech-
niques analogous to the transfer-function, root-locus procedures for examining
the characteristics of solutions of systems of non-linear, partial differential
equations. With the advent of very large digital computers, converting the
equations fo difference equations for solution or using a variety of forward
integration techniques became feasible. |In order for such techniques o retain
sufficient accuracy when computing slowly decaying oscillations, however, ex-
treme precision must be maintained. Inherently, the computation requires con-
siderable Time on a large machine.

Conceptually, a simpler approach is to employ an analog computer. Here,
too, a large machine with many function generators is required. Also the avail-
ability of skilled analog programmers seems fo be l|limited while the number of
"canned" digital programs is multiplying. Thus the user who finds it necessary
fo analyze non-linear motions is advised to secure a suitable program from
others who have empioyed it.

* See equations A-8 and A-27.
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SOME NOTES ON THE CONSTRUCTION AND INTERPRETATION OF
BODE PLOTS AND ROOT LOCUS DIAGRAMS

The use of Bode plots to study airframe response dates from the early 1950's.
The Bode plot was by then a familiar tool to the control system engineer and
when he was given responsibility for developing advanced autopilots, it was na-
tural for him to employ a representation of the airframe dynamics which would
facilitate his task. How it does this is outlined below.

The aircraft alone can be considered as one block in a combined aircraft-
automatic control system feedback loop.

Automatic Aero- Response
Control [ sServo gz::r“;'lc 4 Aircraft :po
System Surface

Sensor —

Figure F-1. Sample block diagram.

Each block is described by one or more differential equations, according to
Newton's Second Law of Motion or its electrical equivalent. To combine the
characteristics of each block so as to form the characteristics of the overall
system is quite difficult because a signal is modified in both phase and ampli-
tude in going through each block. By applying the Laplace transform

Fis) = [° f(23e™"

to the jescribing differential equations one obtains an algebraic representa-
tion for each block in the system. If is Then convenient to arrange this re-
presentation in the form of a transfer function, i.e., as a ratio of block res-
ponse to block excitation. These transfer functions can then be multiplied
together to yield system response to system excitation. It is a relatively
straight forward procedure because each transfer function is merely a ratio of
polynomials in the Laplace operafor s.

A transfer function can be made to display additional physical significance
by allowing jw fto replace s, where w is a frequency and j = v - The re-
sulting transfer function is then a ratio of products of vector quantities, such
as for example

(3+4]) (5+6])
(2+]) (74559 °

etc.
356



Bed

The rules for reducing this complex quotient to its simplest form are (1)
write each factor as an amplitude and a phase angle,(2) multiply the numerator
amp litudes together, (3) multiply the denominator amplitudes together, (4) add
the numerator phase angles, (5) add the denominator phase angles, (6) form the
ratio of numerator to denominator amplitudes (7) form the difference between
numerator and denominator phase angles. The total transfer function is then
represented by a single amplitude and a single phase angle. The numerical
values of amplitude and phase angle are computed at each frequency of interest.
(The amplitude and phase angle of the first factor in the example are
Amp = Vv 32+ 4Z = 5 and phase tan-l 4/3.)

By choosing a log-log or db-log frequency representation fo plot the ampli-
tude ratio and a linear-log frequency plot for phase angle, one can simply add
amplitude ratios and phase angles of components graphically to obtain transfer
functions of the entire system. One can also do this for the factors in a
transfer function.

Certain shape amplitude ratios-frequency plots can be shown to be associ-
ated with certain time responses. For example, the transfer function of a
simple series resistor-capacitor circuit

C
o ]l \L ' —0
Ein R Eout
o- 0

Figure F-2. Sample resistor-capacitor circuit.

can be written

E .
o - __Ju

Ei ) =+ jw
RC "

The differential equation describing the current flow in this situation is of
first order; hence, the transfer function shown is said fo be that of a first
order system. |If E; is a step, Ej will rise lnsTanfaneoust to the value of E;

and then decay with time, reaching 37% of E; in RC seconds. Such time response
is then characteristic of first order systems.

I+ will be noted that when ws>1/RC, |EO/Ei|z1, i.e., independent of fre-
quency and when w<<1/RC, |E /Ei|*RCw. A line such as RCw when plotted on a log
amplitude, log frequency plo+ has a slope of +1. Since

db =20 Iog(Eo/Ei),
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this represents a slope of +6db per octave or +20 db per decade. The slope for
large values of w is 0 db per octave and the change begins in the neighborhood
of w=1/RC. The phase angle will change a total 90° in going from w=0 to w=w.

If Ej is made a sine wave of frequency w', the plot of |E,/E;| indicates that
for w'=1/2RC, Eo/Ej = 1/2; for w”=1/10 RC,Eo/E; = 1/10, and ?he phase angle (s
about--30°. For w'>1/RC, E,/E; = 1 and the phase angle is zero. Thus the
circuit fransmits sine wave W|+h frequencies greater than 1/RC essentially un-
changed in phase or amplitude but differentiates, I.e., changes phase angle by
90° and amplitude by the factor w, sine waves with frequencies less than 1/RC.

Intferchanging the resistor and capacitor results in the transfer function
for a low frequency integrating circuit

1
. __F
E.
i 1 .
m'l“_jw

Note that the denominator of the transfer function is the same for both circuits.
Thus this circuit will also exhibit the characteristic of a first order system
in response to a step in E;:E  will reach 63% or Ej in RC seconds.

Systems described by a second order differential equation, i.e., a mass-
spring—-damper system or a Inductance-capacitance-resistance system, yield
transfer function denominators of the form

2 2 3
w,oTw + JZCwnw
where w_ is the natural frequency of the system, that is, the frequency af
which the system would oscillate or resonate indefinitely if there were no
damping or resistance. ¢ is the damping ratio. |t describes the envelope of a
decaying sinusoid:

£(£) = o 2UnT iy (0 /T 27 )

On the Bode plot, a second order denominator factor will begin as a horizon-
tal line at low frequencies. The amplifude will slowly increase and peak in the
neighborhood of w,, the ratio of horizontal asymptote to peak height varying
directly with . Beyond wy the amplitude falls off rapidly with a final slope
of =12 db per octave. The total phase angle change is 180° with the 90° point
occurring at w=wp.

I+ will be appreciated that any order polynomial can always be factored to
appear as a product of first and second order factors. Thus given a transfer
function one can always graph it readily by factoring it, graphing the factors,
adding, and plotting the sum.

To obtain a reasonably good indication of the characteristic motions of a
new airplane one need only evaluate the constants in the transfer functions and
plot. The graph of the [6/6 | transfer function will probably exhibit two
peaks, a high, sharp peak at low frequencies and a modest peak at much larger
frequencies. These of course correspond to the phugoid and short period
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modes respectively. The frequencies at which they occur and their damping are
immediately evideni from the plot. The zero frequency value of 8/6. is the
steady state pitching velocity which can be produced by a unit elevator deflec-
tion at a given forward speed, e.g., location, altitude, weight, and angle of
attack. |1 is thus a measure of elevator effectiveness.

By measuring 6 and Sg as functions of time in flight and performing a har-
monic analysis of the time histories it is possible to construct an experimen-
tal ly-determined |é/5€| transfer function. This can then be compared with the
one calculated from the equations of motion. Note that the later will have two
peaks and only two peaks. Flight test records are commonly unreliablie at fre-
quencies less than 1 rad/sec. so that the phugoid is seldom evident. Distinct
peaks may appear on the flight ftest Bode plot at frequencies other than the
short period frequency. These can be due to

(1Y structural resonances excited by the airframe motion
(2) inertial cross coupling (from the dutch roll)
(3) nonlinearities in the motion producing harmonics of
the short period mode or intermodulation with other modes
(4) absence of significant harmonic content in the 85 Trace
at the particular frequency (a spurious peak, therefore)
(5) poor quality data or data processing.

Careful analysis, however, will usually reveal The source of the extra peaks.
One may then compare the measured values of The short period and phugoid fre-
guencies and damping ratios with fthe predicted values. Knowledge of the fre-
quency and damping ratio also permit one to extract flight values of Cmq and

Cp if Cma is known.

This very brief discussion of the construction and utility of Bode plots is
sufficient to point out the fact that they are not very efficient means of
studying the effect on the motion of aircraft of varying the amount of control
system feedback since a new plot must be made for each value of feedback gain.
The same is true for the variation in basic airframe dynamic characteristics
resulting from changes in geometry or mass distribution. The root locus diagram
was developed to overcome this difficulty. As the name implies it shows on one
figure, the trajectory the frequency and damping of characteristic modes follow
as system parameters are changed.

Consider the transfer function

0 _ K(s+a) (s2+bs+c)
T =~ s(s+d)(s+e) (s2+fs+g)

the denominator of the transfer function represents the characteristic equation
of the system, e.g., The equation describing the free motion of the system (the
response independent of control input). It is responsible for tThe general solu-
tion of the system of differential equations. The particular solution comes
from the numerator.

I+ will be observed that all values of s which makes the denominator zero
are solutions of the characteristic equation and therefore contribute a term of
the type eAt to the time response. Since for these roots the transfer function
is undefined, denominator roots are called poles. Numerator roots are
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appropriately called zeros. It is customary to plot these poles and zeros on a
graph whose abscissa is the real part of s and whose ordinate is the imaginary
part. Poles are commonly depicted as x's and zeros as O's. A first order root,
e.g., (s+d), will always lie on the abscissa (A second order system has two
roots. They may be real, in which case they lie on the abscissa) or they may

be complex, in which case they are placed equidistant above and below the ab-
scissa.

Any pole which lies in the right half s-plane represents an unstable motion.
Zeros in the right half plane are significant in terms of the type of motion
only if the system depicted is a feedback system. |In this case the zeros re-
present the location of The poles when the feedback gain is made infinite. For
zeros in the right half plane then, the system wit!l then become unstable at
some finite value of feedback gain. Knowledge of the location of the basic air-
craft zeros is needed by designers in order To combine the control system char-
acteristics with those of the aircraft so as to obtain the desired response
without unexpected instabilities. Note also that a zero placed on top of a
pole will eliminate tThe motion caused by that pole from the time history of the
particular variable associated with the numerator (6 in 6/6& for example) but
from no other time history.

A pole located at s=-3, for examplie, means that there is a contribution to
the time history given by e3¢, Thus, the further to the left the pole, the
more rapid is the subsidence. Conversely, a pole at s=3 means the motion has
an unstable component described by e3t, Typically the spiral mode in aircraft
lies stightly to the right. MIL F8785B requires that double amplitude in bank
angle shall not be attained in less than 12 seconds. Since el-693=2, 15 must be
more than 1/0.14| or s<0.141].

Stable oscitlatory modes, it will be recalled, have roots which can be
expressed by

= - + i v I_ Z
51,52 Q(.Un——JUJn z

Figure F3 indicates how varying either frequency or damping ratio separately
moves the poles. It also shows that the product twp determines the time for an
oscillation to decay to half amplitude. When zwn=0.591 the oscillation will de-
cay to half amplitude in one second. Smaller values of the product mean the
time to damp fo half amplitude is longer.

The ordinate of the figure is wn/l—i;z called the damped natural frequency.
This is the frequency of oscillation which one would measure from flight records
and is seen to depend on the damping rafio. Note that for a damping ratio of
unity, the oscillation has decayed to a subsidence described by e~2unt,
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[
Time to half _— * *

amplitude increasing

Figure F-3. Variations of frequency and damping ratio.
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LONGITUDINAL SAMPLE CALCULATIONS

Presented below is a step by step procedure for calculating the longitudinal

stability derivatives for the Cessna 182 airplane. A table containing the per-
Tinent geometric dimensions of the airplane is given; geometric and aerodynamic

data

such as aspect ratio, downwash, and wing |ift curve slope are estimated;

and formulas for the stability derivatives are delineated, with appropriate num-

bers

for the Cessna 182. These formulas were taken from applicable sections in

the text, and the derivatives were calculated only for the cruise condition.

364

S = 174 ft.2 S¢ = 38.71 .2 Sg = 16.61 1.2
b = 35.88 f+. by = 11.54 ft.

A = 0.695 At = 0.65

c.g. located at 26.4% m.a.c.

fusefage length = 25 ft, max fuselage width = 4.17 ft.

length from c.g. to tail quarter-chord = 4.6 ft.

length from wing quarter-chord to tail quarter-chord = 4.6 f+,
length from nose to wing quarter-chord = 6.84 f+t

length from c.g. to wing a.c. (chordwise) = 0.1163 ft.

length from c.g. to wing a.c. (vertical) = |.67 ft.

length from c.g. To thrust axis = 0.0 ft.

Table G-1. Pertinent longitudinal dimensions for the Cessna 182.
mean aerodynamic chord ¢ = 2 = 24~ 4.86 t+
b b~ 35.83 " :
_ 38.71 _ _16.61 _
Sy =TT 87 3.35 ft. ¢t = 7752 .44 f+.
aspect ratio AR = %—= é%¢g§-= 7.378 ARt = l+4%%-= 3.44

incidence angle the wing incidence angle was assumed to be 1.5°.
the tail incidence angle was assumed to be -3.0°.

angle of attack the wing angle of attack is assumed to be 1.5°.

win CL the 2-D wing C| was obtained from Ref. 7 from a plot
shown in Figure I. A Reynolds Number of 5.7 x 106 with
an a=1.5° is used to obtain Cg=0.39. The 3~D wing C| is
now found from

_ Co 0.3
L. " T+¥2.0/AR ~ T+ 2.0/7.378

wing
SN ( 3.oc)°'25
W (AR)O.725 Qt

C = 0.3068

n

downwash angle e = 20.0 CL

= 1.61°

(1/0.695)°+> [(3.0)(4.86)]0'25

= 20.0
(7.378)0'725 14.6



7. horizontal tail o

8. tail efficiency

9. 2-D lift curve slope

10. efficiency factors

1. 3-D lift curve slope

Ot

Ny

= a - iw + i, -¢€=1.5-1.5-3.,0~1.61 = -4.61°
= qt/q assumed to be 0.85

The 2-D wing lift curve slope is taken from Ref. 7
in the linear region and is found to be 0.103 per
degree. Similarly, the tail 2-D [ift curve slope is
found to be 0.1 per degree (using 0009 section).

1T is now necessary to approximate the induced-angle
span efficiency factor ey, for both the wing and the
tail as well as Oswald's efficiency factor, e, for
the wing. For the wing, ey = 1/(1+1), where 1 is
approximated (using a taper ratio of 0.695) from
Figure 4 as 0.103; thus e1 = 1/(1+0.103) = 0.907.
For the tail the same figure is again used (with a
taper ratio of 0.65) and 1=0.084, while

e] = 1/(1+0.084) = 0.92. Oswald's efficiency factor
is also taken from Figure 4, where e = 1/(1+8) and §
is found to be 0.022, while =0.98.

using steps @ and 10, the 3-D |ift curve slopes can
now be calculated.

(c, )

L, 2-D
c, ) . =
La wing (CLa)Z_D57.3
1+ e, AR
~ 0.103 ~
= [, _(0.103) 57.3 = '325r22r0r
(3.1416)(.907)(7.378) . g
.61 per
radian
(C, ) = 0.1 = 0.0635 per
L tail” 1, (0.1 (57.3) Searos or
o (3.1416)(.92)(3.44) g
3.64 per
radian

12. change in downwash with o

g /003 e 025
€
—— = (20.0)(C ( =
do (L, )per A0 725 U )
degree 2
0.25
20.0(0.085)1/0-092)___ (3(4.86) = 0.42
(7.378)°" 14.6
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13.

2-D wing CD The 2-D wing Cpy can be approximated from Ref. 7, depending
a on the angle of attack of the wing. |If the angle of attack
is relatively small,it may be neglected in many cases. For
the cruise condition of the Cessna 182 (CD )2—D = 0.0
a
elevator angle A procedure for approximating the elevator deflection re-
quired for equilibrium flight is given below. The taill
lift coefficient, based on the tail area, required for
equilibrium flight can be approximated by

xa

c - C )

Ltait Lwing 2
0.013.

The angle of attack required to achieve this lift
coefficient is

C

S

e (0.307)(2163) (174 )(.é5)

14.67238.71

JI»—I

t

L _0.013

C ~ 0.0635
( Lo )per

degree

= o
areq'd = 0.204°.

The actual angle of attack of the tail from Ref. 7 is
at=-4.61°. Now the difference between areq'd and a¢ is
the effective angle of attack produced by ﬂeflecTing The
elevator. From Figure 13,

da S

366

_t. 0.624, based on £ 0.43. Thus
dé S
E T
o 1 - O
5 = _Ied d t _ 0.204 + 4.6l _ 7.71°.
E dat 0.624
dég
f X
i = — = = ¥
parasite drag, CDf (CDf)airplane < where S = wing area and f CD ATT

Cpy is The drag coefficient of each airplane component
part and is multiplied by the area on which it is
based and summed for all the components to obtain f.

f . =C., S , where C, = 0.0065
wing D “w D

W W 6
(taken from Ref. 7 for RN=5.7 x 107);
Thus, 2 2
f . = (0.0065) (174 £1t7) = |.131 ft
wing

ffuselage B (CDﬂ)fuselage(Aﬂ)fuselage

max. fuselage height = 4.8 ft. height/length = 0.192
max. fuselage width = 4.2 ft, width/length = 0.168
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8.

20.

21.

Thus, from fuselage data, Cpy = 0.0Q63. Add

ing 20% for

the canopy, Cp, = 0.0756. Assuming a rectangular area,

A= (4.8)(4.2) = 20.2 .2,

_ 2, _ 2
ffuselage = (0.0756)(20.2 ft.7) = 1.525 f+t.
flanding B (CDnAn)main * (CD An)nose

gear gear gear

b4

The value of f for the main gear is found from Table 5 to
be 0.74. For the nose gear, where the diameter = 1 foot

and the width = 0.5 feet, Cp, = 0.8 and Ag = (0.5)(1.0) =
0.5 ft.2. Thus,
_ _ 2
flanding = 0.74 + (0.8)(0.5) = |.14 f+.
gear 2
f = (C, A) = (0.007)(38.71) = 0.2715 f+t.
empennage Dn T empennage
f = {.131 + 1.525 + 1.14 + 0.271 = 4,067 fT.Z
total
Adding 10% for mutual interference between component EarTs
and 5% for small protuberances, f_. = 4,677 ft.4.
airplane
Thus,
(CDf)airplane %,(CDﬂ)airplane = 0.0269.
S
airplane C ) =C, +C, <n,=0.307 + 0.0129(23:71)( 85)
L L airplane Lw Lt Sw t ‘ |74 ‘
= 0.309
c 2
airplane G, (CD)airpIane - (CDﬂ)airplane+ TeAR
2
- (0.307) _
L 0% e et 37ey - 0-03!
T
airplane C and C C = , C , but T = 0.
m T m %DUZS T %pUZS
Thus, C_ = 0.0 and C. = 0.0.
m T
airplane CL J—ED l—Em s CT CL = CD = Cm = CT = 0.0
u u u u u u u u
airplane CL CL = (CL )win = 4,6]
o o a 9 dc
do 2CL
airplane Gy Cp dairplane = da * TeAR CL
[s ) a p a
- 2(.309)(4.61)
= 0.0+ T 9B (7.378)
= 0.126
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2Z2. airplane Cm
a

23. airplane CL
&

24. airplane CD
a

25. airplane Cm
a

368

C J)_. =C - C +C
m. airplane m m m

wing “tail “fus.
2C a - i C X
_ L W D a
(Cma)wing —'{[I.O * neAR( 57.3 ) + Eﬁj] c

[s ]
N[ G By =l
TeAR 57.3 CL c L
o a

_ 2(.309) 0.03117{0.1163
= 1[i'0 t e ee 7378y (00t 1g ][ 7.56 J

2(.309) 0.3097 [1.67
* [(3.I4|6)(.98)(7.378) - 0.0 - "hi%ﬂ] [ZTEB]}B"6[]

(C_) . =0.048
m_ ‘wing
o
S, %
_ dey "t 't
Cn tait = CL (1- HEJ 5S¢ ™
a d.t W
_ 38.71\(14.6 _
= (3.63)(.58)(*775FJ(ZTEEJ(.85) = 1.198
c 5 2K 0.50U1%25.0) | s
m_ “fus. S ¢ (174)(4.86) )
a w
c_)_. = 0.048 - 1.2 + 0.265 = -0.885
m. airplane
2,7 S
_ de ¢ "¢
(CL.)airp!ane =200 @ T %
a G.t w
_ 14.64.38.71 _
= (2.0)(3.64)(0.42)(2756)( = 1(.85) = .74
Cp. = 0.0
o
%, %,”S
= - de tt ¢
(Cm.)airplane =200 @ T T ™
[0 2 (!.t W
_ 14.64(14.64,38.71
= '2'0(3'64)('42)(ZT§6)LIZ§§( ) (-85)

= =5.24



26. airplane CL

q

27. airplane C

D
q

28. airplane Cm

q

29. airplane CL

8

30. airEIane CDG

\
©
[92]

t 1

_ X
€ )airplane =202 € +207C gmy
q o @, W
_ _0.1163 |
= 2.0 (-=zgz)4.61)
4.6 38.61, _
+ 2.0(z5g) (3.64)(Z57-) (.85) = 3.9
CD )airplane = 0.0
9 2
c ) =-Z x| ¢, -2-t5c >t
m_‘airplane Z L. 5 M
q ? Lo c @, "W
= ~2.0 L1193 yi63) 461
(4.86)
14.6
- 2.0 (3-86) (3. 64)( )( 85) = -12.43
C
e, Y s,
(°Ly Jairplane = (% )((a e )s ng
2
E E o 2
t
C can be found from Figure 14 for c,/c = 145 . 43
ZG f 3.35 '
E
or C, = 0.06 per degree or 3.4l per radian.
GE
(aG)CL
———— can be found from Figure 16 using a c¢,/c ratio of
(aG)Cg f
This ratio gives a value of (a,) -0.77. Using this
value and the tail aspect ratio, 23-44,
(aG)CL
IR 1.04 from the lower part of Figure 16. Thus,
%s’c
A
C _ (3.64) 8.71 _
s, airplane = (3.41)F o731 .04)(2 r~7)(.85) = 0.427

To estimate Cpsp, the tail surface in Figure 17 which is
most like the one in question should be used. The num-
erical value of Cpge can be ftaken from plots of Cp versus
a for different elevator deflections. From Figure 17

for tail surface 5, CD per radian = 0.315. Thus,

E
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St

(CD(S Jairplane (CD(S Jper radian 5_ "z
E E v
= (0.315)(2571)(.85) = 0.059 per radian
%
- - -t = - (la.6 _
31. airplane cm6 (Cma ) =-—=C_  =- (zg)0.427) = -1.28
E E airplane GE
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LATERAL SAMPLE CALCULATIONS

The following is a detailed procedure for calculating the lateral stability
derivatives for the Cessna 182 airplane. In TableG-2 the pertinent airplane
characteristics are given, from which certain geometric and aerodynamic data
such as effective vertical tail aspect ratio, vertical fail |ift curve slope,
wing and horizontal tail aspect ratio, body side area, and fuselage volume are
calculated. Then the formulas for the stability derivatives, from the appro-
priate sections in the text, are presented with the numbers corresponding to
the Cessna 182 for the cruise condition.

w
Py
L5 1 T | T { N O | A 1}

WNOSE
HFCY
WFCY
LFCY

IMH =
HBCY

WBCY
LBCY

174 £+.2 by = 35.83 ft. cL = .307

1.73° 7w = -1.835 ft. A= .7

25 ft. xp = 7.0 . H1 = 4.8 ft.

1.8 ft. by = 8.9 ft. Cq = 0.75 ft.
6.95 ft.2 H = 4.85 ft. Sy = 18.57 f+.2
5.75 f+. R] = 0.73 ft. 2y = 2.82 ft.
.85 Ly = 14.8 ft. W = 4.02 ft.
1.6 ft. Shp = 38.71 f+.2 Ap = .66

8.34 ft. Cp, = -0279 U = 219 ft/sec.

p = .00205 slugs/ft.”, density at 5,000 feet altitude
HNOSE = 2.7 f+., fuselage height in nose region

6.41 ft., length along body centerline from nose to

2.8 ft., fuselage width in nose region

3.5 ft., fuselage height at front of canopy

3.6 ft., fuselage width at front of canopy

3.12 ft., length along body centerline from nose to
front of canopy

point of maximum fuselage height
2.9 ft., fuselage height at back of canopy
3.1 ft., fuselage width at back of canopy
12.83 ff., length along body centerline from nose
To back of canopy

Table G-2. Pertinent lateral dimensions for the Cessna !82.

{. effective aspect ratio and lift curve slope of vertical tajl

b 2

Ae = 1.55 EQL-= 2.76
v
From Figure 28, a, = (CL )V = .0534/deg.= 3.06/rad.
[0 3
2. aspect ratio of wing and horizontal tail
bw2 b, .2

AR = 5 - = 7.378; (AR) =(§;J = 3.476
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3. mean aerodynamic chord of wing

S

= W _
S 4,86 ft.
W

4. estimate body side area

The body side area (Sgg) is estimated using four trape-
zoids by the following formula:

s = (HNOSE + HFCY) (LFCY) + (H + HFCY) (LIMH - LFCY)

B, 7.0 7.0
, (H+ HBOY) (LBCY - ey | (HBCY + 2Rp)(L, - LBCY)

2.0 2.0

74.8 fT.Z

5. estimate fuselage volume

The fuselage volume is estimated using four prismoids
by the following formulas:

V1 = LFCY[2.0(HNOSE *WNOSE+HFCY -WFCY) + HFCY «WNOSE

+ HNOSE - WFCY]
V2 = (LMH-LFCY)[2.0(HFCY +WFCY+H-W) + H+ WFCY + HFCY - W]
V3 = (LBCY-LMH)[2.0(HBCY-WBCY+HW) + H « WBCY + W - HBCY]
V4 = (L, -LBCY)[2.0(HBCY-WBCY+4.0+R, ™) + HECY - 2.0R,

+ WBCY - 2.0R1]

Volume = (V1+V2+V3+V4)/6.0 = 236.0 f+.-

Now each of the stability derivatives will be calculated using the formula from
the text which seems best suited for light aircraft.

6. C (C_) =(C_ ). +(C ) + (C ), .
Ye Yg total Yg wing Yg fus Ye tail

= -.0001|r| = ~.000173/deg = -.00991/rad

(Body Reference Area

S
W

(CLy) us |S assumed equal fo 0.1/rad.

Ki from Figure 23 is 1.647. 2
Body Reference Area = (Fuselage Volume)2/3 = 38.19 ft.°.
Therefore,

(Cy )wing
B

(C_ ) = -Ki(C, )
Yg fus La fus

38.19

(C, Vo = =1.64700. D) (5575

g fus ) = -.03616/rad.
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( ) QEJEX.S
9B

= - A
= -k ) [ 1+ RS
o w

CyB tail
K, from Figure 24, is 1.0

d

where d is equal 1o H, the maximum fuselage height.

q s z
(1+89Y = 724 + 1.535() + .4 X + .009(AR) = 0.802
9B’q Sw

Thus (Cy )Tail = -,2619/rad. Therefore,

B
(CyB)TOTaI = ~-,0099! - .03616 -~ .2619 = -.3086/rad.

(C, ) =(, ) +(€, ) .~ +(C ) + (AC_ )
26 total 28 W ls w,I=0 EB v zB 1

+ (AC2 )
C B
2
(c, ), = L=E)r, if the tail shape is ignored.
8 W r
"2 2
—— from Figure 26 is -.000238/deg”, so

2

(CRB)W = -,0236/rad.

_ ~K(.71A+.29)
(Cy Yy =0 * CL[: A + .05]

B
Assuming that K = 1.25, this gives
(CzB)w,r=o = -.04313/rad.

SV z,

(CR )V =3, 5 5 N " -.02184/rad.

B woow
From Table 9, values of (ACQB)1 = -.0006 and
(8Cggl)2 = .00016 are given. Therefore,
(C2 )T tal = -.0236 - .04313 - ,02184 - .0006 + .000l6

g oM@l - _ . 089/rad.
© _ _ Body Side Area *b _ . , v

n, total n S b y, tTail b

B8 W W B W
From Figure 30, K, = .002539/deg = 0.1455/rad.
From the C calculation, (C ), ., = -.2619/rad.

yB y8 tai
Therefore,
_ 74.8y 25 o 14.8
oy total 1455( 7555 - (2619 3505 )
= .06455/rad.
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«, ) = (Cy ), *+ (G )y + (),

2 “total
P P p
Since zero wing sweep:
AR+4 1

(C, > = [, ) -] - =C. .

lp W [ zp a, 2;] ((a2g )AR+4 8 D

oW

From Figure 34’ (C )ao=2.n. = -.4794/rad. Also,from
Ref. 7 Using a 2413PaT25611 (ag)y = 5.9/rad. Substituting
gives
(C, ), = (-.4794) [ 137800} _ L 0279) = ~.4643/rad.

P (5=)7.378+4.0

S

g h =0 §D{EDJ2(01 Yo =2x Z;AR)h -t
p " p o (TE;_T_)(AR)h+4'O
o’h

(@)
|

From Figure 34,using the horizontal tail aspect and
taper ratios of 3.476 and 0.66, respectively, gives

(C, )ao=21r = -.29/rad.

Again from Ref. 7, with a 0009 airfoil, (apg)y = 5.73/rad,
which, when substituted in the above equation, gives

(Cgp)h =" -,00324/rad.
z
_ vy2 _
c, ), = 2(z) (€ Vyaqy = ~-00323/rad.
p W B
Therefore, (C2 )ToTal = -.4708/rad.
p
Cy (ACy )
c. = (=B, + IZN
yp CL L (lep)l,:O Rp
From Figure 32,
CY
(—=2) = -.0795/rad.
CL
Figure 33 gives
(ACy Y
TE“‘%’“‘ = .02743. Therefore,
2 "'I=0
p
(Cy ) = (-.0795)(.307) + (.02743)(-.4708) = -.0373/rad.
P
(Cn )TOTaI - (Cn )w * (Cn )v
P P p



The wing contribution Is given by the following formula:

c
2 n
€. ) =C P4 __ [1+6(1+ coshy Tan A] (—=2)
n

b W L AR+4cosA AR 12 CL

Figure 35, as a function of wing aspect and taper
ratio, gives

A=0°

C
n
(CL )j=go = ~-0588/rad. Thus,
(€ ), = (-.0588)(.307) = -.0180/rad.

p
The vertical tail contribution is given by

w

(C_ ) ={57.3 a —V—l (z sinat+f cosa)}
n v v S b v v
p Wow
o0 dg
%}—(zvcosa—lvsina) - ——%—+ ——%
w a2 Pb
2U 2U
301
From Figure 36, —Eg = 0,24, where ht is assumed approxi-
BZU mately equal to z,-
302 ZV—(Z cosa—lvsina) 2 3
—£=-9.30 v =— = 0.0
apb. bw bw
2U
for zero angle of attack. Therefore,
(Cn )V = -.0l119/rad. and (Cn )ToTaI = -.0292/rad.
p p
(C. ) = (C ) + (. ).
Y- Total YW Y talil
(C_ ) = .143C, - .05 = -.0061/rad.
Y. W L
r %
(C_ ), ., = =2.0 =~ (C_ ), ., = .2164/rad.
Y tail bw Yg tail
Thus, (Cyr)ToTal = ,2103/rad.
(CR )TOTaI - (Cl )wing * (Cl )Tail
r r r
Cg
From Figure 38, 0755 = 0.2568/rad. Thus,
L
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C

9
= [ =
(Czr)wing = CL)CL 0.0788/rad. Also,
- Lv 2v _
(Cy Vygpy =-2.0 B“'E"(Cy Yygqiy = 0.0170/rad. Thus,
r woow B
(Clr)+o+al = 0.0958/rad.
14. Cn (Cn )ToTaI - (Cn )w + (Cn )Tail
I r r r
_ 1+3 AR-6  1l-Ay. 2
= =330 --02(1- T3 - 7500
= -.009852/rad.
2v 2
(Cnr)fail = 2(5) (cyB)TaiI = -.08938/rad. Thus,
(Cnr)TOTal = -,09924/rad.
15, C The value of C SA is assumed zero for conventional
VaA light aircraft.
C
£s
6. C c, = (—2)
2 s T c
A A Ls

From Figure 42,(—?—AJ is obtained by first considering
the cutboard edge of the aileron

b_+y.
(537§i-= .96%>and corresponding to this point getting

a value of
CQGA
- = 0.786, then using the inboard edge of the aileron

Y.
577 = -466 and, again from Figure 42, getting a
W

corresponding value of

C15A
- = 0.231. These two values are then subfracted,

outboard station minus inboard station, to give a
- = (.786-.231) = 0.555 over the extent of unit

antisymmetrical angle of attack. Now from Figure 41,
T = 0.319. Therefore,
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C
n5A

yéR

» Coe 5 C
6R

ndR

Cza
A
Cls = ( . )t = 0.177/rad.
A
CnaA = 2|<c|_c,z(,SA

From Figures 43 and 44, K is determined to be -0.1537.
Therefore,

C”G = 2.0(-.1537)(.307)(.177) = -.0167/rad.
A

These control derivatives are given by the following
formulas:

Sv
C = a1 —
YR v Sw
Sv Zv
S
R woow
S &
C = -a T - v n
nsg v Sw bw

From Figure 46 as a function of rudder area to vertical
Tail area ratio,

S

& = 0.374, it is determined that T = 0.574. Thus,
v
these three derivatives are evaluated as follows:

= .187/rad.
YGR
Cog = .0147/rad.
R
Cn
SR = -,0658/rad.
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LONGITUDINAL PROGRAM

GIVEN VALUES OF THE STABILITY DERIVATIVES AND AIRCRAFT
CHARACTERISTICS THIS PROGRAM PERFORMS THE FOLLOWING:

1) CALCULATES OIMENSIONAL STABILITY DERIVATIVES

2) FORMS THE TRANSFER FUNCTIONS, TF{5)=N{51/DLS)

3) SOLVE FOR ROOTS OF DUS) AND N(S)

4) CALCULATE NATURAL FREQUENCIES, DAMPING RAT!0S, TIME TO DAMP
T0 OME-HALF AMPLITUDE, AND SETTLING TIME

) PRODUCES INFORMATION NEEDED FOR BODE PLOT CONSTRUCTION

THE DERIVATION OF THE EQUATIONS OF MOTION ON WHICH THIS ANALYSIS 15
BASED WAS TAKEN FROM *DYNAMICS OF THE ALRFRAME!, BUREAU OF
AERONAUTICS REPORT, AE-6l-411.

THE ANALYSIS DESCRIBED ABOVE MUST MEET THE ASSUMPTIONS IMPOSED ON
THE EQUATIONS GF MOTION WHEN THEY WERE DERIVED.
THESE ASSUMPTIONS ARE3

1) THE AIRFRAME 15 ASSUMED TO B8E A A1G10 BODY.

2) THE EARTH IS ASSUMED TO BE FIXED IN SPACE, AND, UNLESS
SPECIFICALLY STATED OTHERMWISE, THE EARTH'S ATMOSPHERE IS
ASSUMED 7O BE FIXED WITH RESPECT TO THE EARTH.

THE MASS OF THE AIRPLANE IS ASSUMED TO REMAIN CONSTANT FOR

3
THE DURATIGN OF ANY PARTICULAR DYNANIC ANALYSIS.

4) THE X-I PLANE 15 ASSUMED TO 8E A PLANE OF SYMMETRY.

51 THE OISTURBANCES FROM THE STEADY FLIGHT CUNDITION ARE ASSUMED
T0 BE SMALL ENOUGH SO THAT THE PRODUCTS AND SQUARES OF THE
CHANGES IN YELOCITIES ARE NEGLIGIBLE IN COMPARISON WITH THE
CHANGES THEMSELVES. ALSOs THE DISTURBANCE ANGLES ARE ASSUMED
TG BE SMALL ENOUGH SO THAT THE SINES OF THESE ANGLES MAY 8E
SET EQUAL TO THE ANGLES AND THE COSINES SET EQUAL TO ONE.
PRODUCTS OF THESE ANGLES ARE ALSO APPROXIMATELY 2ERO AND CAN
BE NEGLECTED. ANDy SINCE THE DISTURBANCES ARE SMALLy THE
CHANGE IN AIR DENSITY ENCOUNTERED BY THE AIRPLANE DURING ANY
DISTURBANCE CAN BE LONSIDERED VO BE ZERO.

&) DURING THE STEADY FLIGHT CONDITION, THE AIRPLANE 1S ASSUMED
70 BE FLYING WITH WINGS LEVEL AND ALL COMPONENTS OF VELOCITY
ZERD EXCEPT U SUB O. W SUB 0 = 0 BECAUSE THE STABILITY AXES
WERE CHOSEN AS THE REFERENCE AXES.

7) THE FLOW IS ASSUMED TO BE QUASI-STEADY.

THE FOLLOWING CARDS IMPLY THAT THE PROGRAM 1S EXECUTED IN DOUBLE
PRECISION.

IMPLICIT REAL*B(A-H,0-2)
REAL®8 MS, 1YY MUMW, MOW,MQ MINsNUS s NASsNTHS s KGAINyKC ¢ KROOT KKK KDy

SKNNWS

COMPLEX*16 P,TST

COMNDA WNSPyZSPs TL25P s TOSSP¢MNP+ ZP,T12P, TO5P ¢ MF(21) »RROI10) 4RRNI
$10),RIDC10) yRINLLO), AREZL) \PHASE(21) yACC,WCYCLEL2]1)¢ARDBI 21}, PHDEG
$(21) 4KGAIN

COMMON I

DIMENSION NUS(5) ¢NAS{5) sNTH5(5},D5(6),ROGTR{10) RODTIC10),CE5),KCH
$4) yQUFLI},QUF2(3) ,AR1 (2} rRR2(2) yRI1L2},R12{2),CCL4) RA(3},LOFFILE
$S)yRIL3) o XREI) 4 X113),COF{3) RE(2)RIMI2},sRODT(1},COFF{2)KKKI21)oNW
$5(5),Pl6)

THE READ STATEMENT 15 THE INPUT OF ALL NON-OIMENSIONAL STABILITY
DERIVATIVES, EXCLUDING CONTROL SURFALE OERIVATIVES.

THE NON-DIMENSIONAL DERIVAFIVE CTRPM IS INCLUDED ONLY FOR THE SAKE
OF COMPLETENESS. IF THE VALUE OF THIS DERIVATIVE IS KNOWN IT
SHOULD BR USED, OTHERWISE IT SHOULD BE TREATED SIMILAR TO CTU.

READ(1+1003CLsCOsCMsCToCLA,CDA,CMASCLQ,COQCMQ,CLOA; COCA,CHDA,LTRP
$My CLU,CDOULCHUCTU
100 FORMAT{BF10.6/8F10.6/2F10.6)

19X,
fe1X

39X, 'LONGITUDINAL ST
IRL LI TALLRTEIS PR L)

ofy

SABILITY DERIVATIVES?, 45X,

Sel19X 01/, 1X, "4 ,119X%s )

WRITE{3420L)CLyCCsCMyCToCLAyCOAICMASCLQCOQsCNQyCLDA,CDDA,CMDALCTR
Ju

SPM, [] v
201 FURMAT{1X,*e CL =1 ,Fl0.6+4X,*CD =43F10.694Xy*CNH
$y°CT #FLOs6r4Xs *CLA =% )F10.6,4X,*CDA Fl0.64° ’
r4X,"CLQ =7 yF10.6+4X, CDQ =?,FLO.6,4Xs'CHQ
FlOa6,4X,"CODA =*4F10.8, #4,/91%Xy"® (MDA =*,F1D.by
sFl0,644X,"COU ®* 4F10.6 04X " CHU F
PL19Ke* %0y /o dXy 140, 119X,

INPUT OF PERTINENT AIRCRAFT CHARACTERISTICS

AEAD(1,101)RHDUySsMSsCHe 1YY 3COSXZSINXZs2JeGLOSGMsGSINGM
101 FORMAT(BF10.5/3FL0.5)

25 1S THE PERPENDICULAR DISTANCE FROM THE C.G. TO THRUST LINE,
POSITIVE FOR C.G. ABOVE THE THRUST LINE

CH IS THE MEAN AERODYNAMIC CHORD OF THE WING
U IS THE SPEED OF THE AIRCRAFT IN FEET PER SECOND

COSXZ IS THE COSINE OF ANGLE MADE BETWEEN THE THRUST AXIS AND THE
WIND AXIS

SINXZ 1S THE SINE DF THE ANGLE MADE BETWEEN THE VHRUST AXIS AND
THE WIND AXIS

RHO IS THE DENSITY AT THE ALTITUDE WHICH THE AIRPLANE IS FLYING
§ IS THE WING AREA DF THE AIRPLANE

MS 1S THE MASS OF THE AIRPLANE

I¥Y 1S THE MOMENT OF INERTIA ABOUT THE Y AXIS

GCOSGM AND GSIMGM ARE THE PRODUCTS OF THE ACCELERATION DUE TO

GRAVITY (ASSUME = 32.2 FT/SEC®%2 FOR THIS ALTITUDE RANGE) AND THE
COSINE AND SINE RESPECTIVELY OF PHE [NITIAL FLIGHT PATH AMGLE ,

38Q

caoana

aoan

fAAMPANBOONADNOOARAARAODD

LT

ana

aona anan e la ke Xakal

anan

GAMMA, (USUALLY ZERO FOR LEVEL FLIGHT).

02 JRHO ¢ S¢ M5 p GCOSGMy COSXZp ZJ2UsCHy 1YY GSINGH SINXT
222 :g;:i:?;inlﬂﬂ': ) e 1Xy vlX, 0 6X ERTINENT AIRPL
$ANE CHARACTERISTICS® y48X BXy"#Y9 /gl Xyt
$4128Xy "9, /91Xy a =
$4F10.643X,°G*LOS (GAMKA)

55-6.' JalXpt® U = ¢CHORD =9 FL0.643X, " IYY
$¢F10.4,3Xy *GHSINIGAMMA) F10.6,3X,*SINIXZ) F10.6419Xs18%,/51X
84091 ,128X, Zy 1X4130¢° w17
LCOUNT=0
LCOUNT 1S A COUNTER WHICH PREVENTS MULTIPLE CALCULATEONS OF THE
CHARACTERISTIC EQUATION AND NUMERATOR COEFFICIENTS.
LL=1,4 CONSTITUTES SOLUTIONS FOR FOUR DIFFERENT NUMERATORS«
DO 35 LL=1s%
THE READ STATEMENT S8ELOW 15 THE INPUT FOR THE VARIABLES EXPLAINED
BELOW.
AEAD(Ly102)CLINsCOIN, CMIN, Ky NUKER s ACC

102 FORMATI3F10.64213:E14.7)

CLINs COIN, AND CMIN ARE THE STABILIVY DERIVATIVES UUE TO CONTROL
SURFACE DEFLECTIONS. CLIN IS EITHER THE PARTIAL OF CL WITH
RESPECT 7O ELEVATOR DEFLECTION DR FLAP DEFLECTION. THE VALUE OF K
DETERMINES WHETHER IT IS CONCERNED WITH FLAPS OR ELEVATOR.

IF K IS GIVEN THE VALUE 1 THEN CLIN, CDIN, AND CHMIN ARE PARTIAL
CERIVATIVES MITH RESPECT TO ELEVATOR DEFLECTION. IF K=2 THEN THE
PARTIALS ARE TAKEN WITH RESPECT TO FLAP DEFLECTION.

NUMER DEFINES WHICH TRANSFER FUNCTION WE ARE INTERESTED INys (U
ALPHAyTHETA,AND W). NUMER=l GIVES VARJIATIONS IN U, NUMER=2 GIVES
VARIATIONS IN ALPHA, NUMER=3 GIVES VARIATIONS IN THETA, AND
NUMER=4 GIVES VARIATIONS IN W.

THUS, FOR EXAMPLE, IF Ke=2 AND NUMER=2 THE TRANSFER FUNCTION WILL
BE VARIATION IN ALPHA DUE TO DEFLECTION OF THE FLAPS.

WITH THE ABOVE DO LJIOP SET FOR LL=1,4 FOUR DATA CARDS MUST BE READ
WITH THE VALUE OF NUMER CHANGING ON EACH CARD FROM 1 TO 4. 1F IT
1S DESIRED TO TALCULATE ONLY ONE TRANSFER FUNCTION THEN THE DO
LOOP RANGE SHOULL BE CHANGED TO DO FROM Li=l.l.

ACC 15 THE ACCURACY USED THROUGHOUT THE PROGRAM TO COMPARE TWO
NUMBERS TO SEE IF THEY ARE SUFFICIENTLY CLOSE.

LCOUNTLCOUNT+1
IF{LCOUNT.GE.2)G0 TO 4
IF(K.NE.LIGD TO 1
WRITE(2,203)
203 FORMATLLSXs9BLY®") 4/ 415K, " %0
$ELEVATOR DEFLECTION®,30Xx
60 To 2
L WRITE(3,204)
204 FORMAT{L15XeS8( %*) /15X, %% ,96X,*%%,/,15X,%+ ¢,33X,"RESPONSE TO
SFLAP DEFLECTION®932X,' #v)

»/u1l5Xs"®  ?,31X,'RESPONSE TOD

. +/15. * CLIN «F10.6
1F10.644Xy"K ¢y 12,4X,"ACC =" ,FLlb.8,
Y9/ 915K.98(%%%))

$44X%, *CDIN
36Xy 915X, 1% 4F0K

CALCULATION UFf DIMENSIONAL STABILITY DERIVATIVES

0 AND DC ARE JUST CONSTANTS USED TO CALCULATE THE DIMENSIONAL
STABILITY DERIVAFIVES.

D=RHO*US SAHS
CC=RHOFUSSH*CH/IYY

DIMENSIONAL STABILITY DERIVATIVES

Xu=De(-{COU+CDI)
Zu=D=(-(CLU+CLY)

MU=DCe {CMU+CH)

TU=D* {CTUSCT)

XW={D/2.0)® (CL-CDA)
ZW={D/2.0)%{—{CLA+CD))
AW=(DC/2.0) *CHA
ZDW=—RHO*SSLHOCLDA/ (4. 0"M5)
XDW==RHO*S&CH*CDDA/{ 4.0%NS)
HDM=RHO®SPCHOCHECNDAZ (4.001YY)
XQw=RHCOUPSSCHALDQ/ (4. 0¥MS)
2Q=~RHO®USSSCHOCLQ/ (4 .0*NS)
MQ=DCFCHOCMA/4.0
TRPM=30¢CH*D*CTRPN

/2.0

ZIN=-D8CL I /2.0
KIN=2DCSCHIN®U/2.0

COEFFICIENTS FOR TRANSFER FUNCTION

Al, A2, A3, A4, A5 ARE CONSTANTS USED TO SIMPLIFY THE CALCUI
QOFf THE DENOMINATOR AND NUMERATOR COEFFICIENTS. LATION

Al=TU=COSXZ+XU
A2=SINXZ®TU-ZU
A3mZJOMSOTU/IYY+MU
A4w].0-1DW

AS=20Q4y

OENOMINATOR COEFEICIENTS, DS{5)S%#4+40S{4)5883+0S(3) 5882
DS(1)y WHERE S REPRESENTS THE LAPLACIAN OPERATOR. ostzise

CSU5)=a4

CLS(4)=—A&® (NQ+AL )=ZW-NONOAS+XDWEA2
DS{I}=AL*{MQOA4+ZW+MDN*AS ) ~A3® ( XDW*AS+XQ*A *ZW- =
$XQ*MDI} ¢ MOWSGS TNGH—MWFAS A4} HRQUZU-AZELMGOXON- Xk
DS{2) =G5S INGH® [XDWeAI +HW-NON*AL) +GCOSGH* (~AZOMDN+AZSAS d B
$HIMOXQI-A2% (- XQONW+XWENQ) $ AL {—HQ* L W+MWPAS } Jeazni-xueas
OS41}=GCOSGM* (MU {~A2)-ZW*A3 ) +GS INGM®{ XNOAS~MU*AL )

NUMERATOR CGEFFICIENTS FOR U VARIAT
NUS(2)Somveas) 10Ns NUS{4)Se83sNUS(I)SHR2e

NUSL4)=XEN®AG+Z [N XDW

NUS(3)mALe{ XQOMIN-HQEXIN)+AS({ XDNeN . -

Rttt IR-HOWOXIN)—ZWaX]N¢ZIN® ( Xu-XDM
MUST2)mASE(-MW* X IN+M INOXH ) +GSTNGH® | MONOXIN-XDESMIN) -
”llNOA&‘H!NIOXIN«Q‘lﬂOZIN‘INI.lQ-HG.lHI-XQ'II-HIN. Gcosche tnou
NUSUL)=GSINGM* [ XINOHW-XWOMIN} ¢GLOSGN®{ZNOMIN-HN*ZIN)

NUMERATOR COEFFICIENTS FOR ANGLE OF ATTA
NAS(3)SeeZeNAS(215+NASI1) X VARIATIONs NASt41see3e



N‘Slﬁl-l]NIU
3 ZINC{ALOKA}/UsNINOASIUSXINGL-A2)/U
AS( J=KQIZINSAL/USKIN DIUOIIN.XQ'I-‘IllU-llN‘Xﬂ"!/U—NlN'AS'A

$1/U-MINSGSINGNIUSXIR®NGO(A2) /U
)lus 11)==XINOGSIRGNOAI/UCKINSCLOSGHOAZ/USZINOGCOSGHOAI/USHL N*GSINGM
$0AL/U

COEFFICIENTS FOR NUMERATOR FOR PITCH VARIATION, NTHS(3}See2¢
NTHS(2) SeNTHS{1)

LLY.Y,Y

KIHS{IpuMINOAL 2 IN®HDN

NTHSl2]l‘l‘l'NlN'AQ‘llN.NDIl'AZUlIlN.XDI-XlN'HDHl'ASU(llN'XWOXlN‘
SAL)-MINOZN4ZINONK

NTHS{1)mALO(MINOZU-HUOLIN) ¢AZS (MINOXu-XIN®HM ) ¢A3S (ZINSXH-XINo ZW]

COEFFICIENTS FOR NUMERATOR FOR W VARIATICN,
KWS{315002 + NWS(2])S ¢ NWS{1)

NiST4)S5ee3 +

LLLLT

NNS(H-NAS(AI!U

KMS(3)eNAS{30U

KWS[2}uNAS(2]00

AWS(L1aNAS(2)ey

KRETEC3,206)05¢5),05(43,05{3),05023,05{1)oRUST4) 4KUS(3)4NUSL2)NUS
$(L) yNASCADINAS(3D o HAS(2] s NASCL) o NTHSC3 ) oNTHSC2) o RTHS (1) o NWS LA T o NKS
$13) o RNS{2)4MN5L1)

206 FORMAT(/Z7//72%43231%8%) /42X 8¢ 121X, 00%4/ 42X, * "BZX"POLYHJKIAL
SCOEFFICIENTS FOR THE DENUI"NATDR AND NUKMERATOR'® 32X, "
$Xy5TE?=21,32]
l-SX"DS(il

os(n)

WSEA)
$INNSIL)
THE DO LOCP BELOW CETERNINES THE ORDER OF THE POLYROMIAL IN THE
CENGMIHATCR, MOD.

LLYL]

IHDABSIOSIlll.G!.lﬂClND-l-l
3 CONTL
lF(KD.hE.OlCO T0 4

IF XD ® Oy THERE 1S NO CHARACTERISTIC EQUATIGN, THEREFORE THE
PROGRAM IS TERMIKATED,

CALL EXIT

THE 4 S1F* STATERENTS BELOM TELL WHICH SET DF NUMERATOR
COEFFICIENTS TO EVALUATE DEPENDING ON THE VALUE OF RUMER.

nana0 oconn

4 JFINUNER.EQ.1}GO TO S
IF{NURER.£Q.2)G0 TO 7
IF{NURER.EQ.3)G0 YO 9
JF{XURER.EQ+4)CO TO 11

5 WRITELS,20T)

207 FORMAT{*1%, 1300°9%) /41X, %9?,128X,
$2¢52X*SOLUTICN FOR U VARIATION® »52X¢
8202,/ 1Ky 147y 228Xs " ZelXe? 126X,
SROOTS® ¢50X*9%, /41X, 28X, '8')

»52Xy240¢=2), 52X,
55X« *DENONRINATOR

THE DO LOGCP BELOW DETERMINES THE ORDER OF THE POLYNOMIAL IN THE
KUS KUMERATOR

DO &6 1a1,4
TFLDABS(NUSII) ) oCTACCIRNaI~1
INT

one

o

CONTINUE
IF{HMNLNEL.D)CO TO 13
HRITE{3,20800N

FORMAT{1Xy*MHat 43}

CALL EXIY

I(RHE(!.ZO‘JI

REATCO 1%, 1300°99),/01Xy 080 4228X,%¢%/,1. 1128Xp'0 %, /g 1Kt

$9,45X, PSGLUTECN FOR ANGLE OF ATTACK Vﬂl‘?lo?{'.isx, . /11X. 145

BXe3BUV=0) 445X, 000, /01X "0 5 120X, 767 /91X,"* -lzﬂly '

$»"OENGNINATCR ROOTS® 586X o/elXe 128K, 000

L0 8 Ial.4

TFIOABS{NASA 5] cGTLACCIMNSI-]
8 CONTVIKUE
IF{NN.NE,0)CO TO 13
WRITE{342C81NN
CALL EXIT
9 WAITEL3,210)

210 FORMAT{®1'y 130( "')./.u.n-.xza:.'-'.l,u.--'.uux.
$9455X,9SULUTICN FOR PITCH VARIATION 45,
$Xe2007=0) 45X, 000, /41X,
tg'DENUKH(l\'OR ROOT. 5

GO 10 I=1,3
lF(UlﬂS"I"ISI!” #GTeACCH=1-1
10 CONTL
IF(lN.lE-DlGO 70 13
WRITEL{3,208)0N
CALL EXIT
11 WRITE(3,211)

213 FORKAT{1', l!O("'l.I.ll."'.lzax
$9,55X,*SOLUTICN FO! 1

ll.ZOl'-'lv”l.""/ IX

l.'ﬂﬂ(ﬂlllﬂfﬂl R00T:

~
o
ou @

20

Sely1Xytn
55

el g 1Ky "3 ,128X, %80, /01Xy 08
45X 5%

Zed

IFIOIBSINIS(l)).ﬁl‘.lccll.‘l-l-l
12 CONTEN

IHIN.KE-D)GU 10 13

MRITE(3,208)0N

CALL EXIT

GETRAT 1S A SUBRCUTEIRE WHICH, USING CTHER SUBROUTINES, CALCULATES
ROOTS, DAMPING RATIOS, AND NATURAL FREQUENCIES, AND THESE ARE
TRANSEERRED TO THE MAINLINE 8Y USE OF A PLOMKON® STATEMENT.

13 CALL GETRUT(DSMLIRRD,RIO)

FOR DAKPING RATIGS GREATER THAN ONE(A NON~OSCILLATORY MGDE) THE
FOLLOWING FOUR CMRD3 PREVENT TAKING THE SQUARE RQOT OF A NEGATIVE
MUKSER WHEH CALCULATING THE DAMPED NATURAL FREQUENCY. IF THE
DANPING PATIOS ARE GREATER THAN ONE THEN THE DAKPED HATUARAL
FREQUEKCIES REMAIN 0.0.

W05P=0.0

LG LG LGLEG LY LT

uOP=0Q,0

JFEOARSIZSPI.GT41.0) GO TO 14

HOSPRUKSPODSCRT(1.0~2SPOISP)
14 IFLOABSIZIP)«GT.1.0) GO TO 15

212 FORMATERXo?30 45X *ROOTI slls%] = #,F10.5,% +4 2yFL0504TXet00)

nonoono

oncoe annb

LLLY

GGG

anaco

L LG L L LY

a0

RRITE[3,213)

34X, "HATURAL FRE

2128X,°¢ %0/ 01Xs
+* SETILING TIME®

2791Xe

0 4!.'"HE FOR 1/2 DANPING
$+18Xe +/91Ke 231X ¢ UNDAMPED OARPED®y BOXy
IIRHE(B.ZHIINSP.NDSP.ZSP.TIZSP'TOSSP
'WX.'SNORT PERIODY ¢FIo5,F104512XeF210a5¢11XsF10.5214X
.lzax;-;-

g
FL045,F10.5¢2X,F10.5
»35Xy581°

11XF10. 5.!4!,

CALCULATION OF VALUES OF WF FOR FUTURE USE IN THE BODE ROUTINE.
INCLUDEQ ARE SELECTED VALUES DF WF(e0lpely1.0510.0,200.0,1000.0}
PLUS & VALUES ARCUMD EACH NATURAL FREQUENCY(2 ABOVE., 2 BELOW, AKD
YHE NATURAL FREQUERCY) TO INCREASE DATA IN TKE BODE PLOT CRITICAL
SREAS.

WF{1)=.01

[ 16 14'216

Ml

IF(XJ)INF(IIH'IO.
16 CCRTINUE

XWF 1S THE KUBER CF NATURAL FREQUENCIES TO BE USED IN THE EODE
ROUTINE.

Kufad

I1 AND K ARE CCUNTERS USED TO DETERMINE THE MAXIMUY VALUE COF KWF
CEPENDING ON THE NUMBER OF NATURAL FREQUENCIES IN BOTH THE
NUMERATOR AND THE OERNOMINATOR OF A PARTICULAR TRANSFER FUMCTION.

11=0

1K=0
IF(1.€Q.0)GC TO 18
IF(1.EQ.2) GO TO 17
WF{12)=0,9ouNP
KF[13)90,759uNP
WF(14}aWNp
KE(150al 1 ouNP
RFL16)1.259kNp
IK=1
XwF=1é
17 WFI7)=,90WNSP
WF{8) 2L TSOUNSP
HFI9)-NNSP
FU10)el. LPKNSP
hFllll-l.ZSOuNsP
1=
IF{XMF.EQ.16)GD TO 18
KuF=11

GETRQT IS USED TO ﬂND ROOTS GF A PARTICULAR KUMERATOR OEPEROING
CN THE VALUE OF MUKER.

18 IFINUMER.EQ.1]1GO TO 19
IFCNUMER .EQ.21G0 TO 2¢
IF(NUMER.EQ.4)GO TO 21
CALL GETROTINTHS,MN¢RRKJRIN)

60 TQ 22
19 CALL GETRCTINUS,ANsRRN,RIN}
T

20 CALL GETROT(NAS,MN,RRN:RIN}

60 TO 22

21 CaLL GETRDT(NIS-A‘{.RRN.R!N)

22 WRITE(D,216)

216 FORMAT(1Xe® 9% ¢56Xe TNUKERATOR ROQOTS? 35TX 4008, /,1X 088 228X,y 101)
MRITE{3,212)0J,RANLI] (RINLJ) yJulpNR)
®RITE(2,213)

IF THE CANPING RATIO HAS AN ABSGLUTE VALUE GREATER THAN ONE(A RON-
QSCILLATGRY MGDE), THEN A OAMPED NATURAL FREQUENCY [S NOT
CALCULATED FOR THE NUMERATOR. THEREFORE, WOSP AND wOP ARE LEFT AS
2ERC.

¥05P®0.0

w0Pe0.0

IFLOABS{2SP).GT.1.0} GO TU 23

NOSPeWNSPODSQRT(1.C~ZSPOLSP)
23 IF(DABS{IP).GT.1.0) GO TO 24

WOP=WNPeDSQRT(1.0-1P*29)

THE TkQ WRITE STATEMENTS BELCW PRINT THE PERTINENT INFORMATION FCOR
CSCILLATCRY MODES IN THE NUMERATOR. 1F THE NATURAL FREQUENCIES
ARE PRINTED AS ZERU THE MODE IS NON-OSCILLATORY.

24 WRITE(3,217)IWNSP uDSP o ZSP+TL25P, TO5SP
WRITE{I,21TIMNKPWDPs 2P, T12P ¢ TO5P

217 70::“.'“! ‘- Xy FFabsFlledy3XeFlO04y11XsF10.5714XoF10.5,22%y
$/91%y 13
WRITE(3,21

218 FORMAT(1Xe" %% 435Xy 58( ¥=1] 435 711Xy %8%,128Xy 741X,
$80DE PLAT lNFaRNa"ON'.“X-"' F11Kot4,120K,0 ¢ I'IX-
SCUENCY" 26Xy *AMPLITUDE RATIO® ;25X " PHASE ANGLE",21X,
$5X» ‘RAD/SEC? 48X, *LYCLES/SECTY I&X"PURE'.!OX.'DECIBELS'.!SX:'RADIAN
$5% 9 8X9 *DEGREES" 115X, " #1)

THE NEXT FEW CARCS ARE A ROUTINE TQ FIND MURE VALUES GF WF FOR THE
B80DE PLOT RGUTINE DEPENDING GN WHETHER OR NOT THE NUMERATOR HAS
ANY OSCILLATORY ROCES. THE FREQUENCIES ANO THE VALUES OF KMF ARE
:’g‘:?fg«é: THE SAPE HANNER AS THOSE OF THE DENOMINATOR PREVIOUSLY

MOl AKD MN1 ARE USED TO PREVENT HAVING ZERD SUBSCRIPTS WHEN
CALCULATIAG THE MUMERATOR AND CENOMINATOR GAINS FOR THE BODE PLOT
SUBROUTINE.

KDl=MDel

KiluMNel

IF{I+£Q.01G0 10 27

11 AKD IK ARE COLNTERS USED TO OETERMINE THE MAXIMUN VALUE OF KNF.
lF(‘l-ED.O.AND.IK.(Q-OIW T0 26

%FL19)euNSP
WF{20)m1.10WNSP
kF(21)al.259uN5P
KWF=21

G0 T0 271
WFL12)m=,98RNSP

2

w

NSP
BF[15)al.18uNsp
WE{16]=1,250RNSP




con LELT.T.T

LT

LI

LET,1.T0Y

LLLY.LT

anonn

nonn

unvmmsv
WFL10)=1.19MASP
WF{11)al.250NSP

XNF=1)
27 IFINURER.ANELLIGO TO 28

THE GAIN (XGAIN} FGX THE ROOT LOCUS PLOTS 1S CALCULATED FROR THE
COEEFICLENTS OF THE HIGHESYT ORDER TERM IN THE DENONIKATCR AKD
NUKERATOR, TF=KGAINIS+A)(SeBI/LS+C)(SeD}y WHERE A AND 8 ARE ROOTS
OF THE WLKERATOR AMO C AND D ARE ROGTS OF THE DEXGNINATOR.

KGATN=NUS{MX1)/DSIKDL)
€0 10 31

IFINURERMEL2)G0 TO 29
KGAINeNASINK1}ZDSINDL)

¢0 T0 31
IFLRUMERKELIICO TO 30
XGAIN=MTHSLANLDZLS MDY
co

2

2

T0 31
30 KGAIN=NNS(MN3)/DS(IOL)
31 EKKFaKWF

THE MEXT 12 CARDS RAKK THE WF®S IN ASCENOING ORDER.
32 wAXeuF(1)
-

£0 33 JOa2KKWF

IFEMF (D) oGELMAXILK=ID
JFENFEID) GCELMAXINAX=NFLID)
CONTINUE

WSAV=WF(KKWF)

WF{XRNF)oUAX

WFILX)=u3AY

KKWF=KRWF=-1
TFLKKRFLEQ.2IGA TO 34

0 10 32

BODE IS THE SUBROUTINE WHSCH CALCULATES AMPLITUDE RATIO AKD PHASE
ANGLE FOR EACH uf. THE IAFORIATION 1S TRANSFERRED YO THE MAINLINE
BY THE USE OF A *COMMON® STATERENT.

34 CALL BODE(RD¢MN,KN
nl‘E(llll‘)"‘Fl“ .IC‘I{I.E(H.LR(‘Ivllbl(ll"lﬂsil"nmﬁ(ll.lilv

13Xy FLO0S5¢6XsFL0.5 ¢12XeFX0e256XeF10.5,22XsF10506XsF

]
KRITE(3,220)
220 FORNATUIX,00,128X,%%%,/,1Xe130(°2% )}

SUBROUTIKE GETROT(COFFI,M,ROOTR,ROOVI}

GETROT IS A SUBRCUTINE WHICH, USING OTHER SUBROUTINESes CALCULATES
ROOTS, CANPIHG RATIOS, AND NATURAL FREQUENCIES, AND THESE ARE
TRANSFERRED 7O THE MAINLINE BY USE CF A *COMWON® STATEMENT.

IRPLICIT REAL®O(A-H,0-1)
REAL®S NS 1YV oMU Milp RDN MG e NIN ) NUS ¢ HAS ¢ WTHS s REALNH ¢ KC 1 KROOT ¢+ KXK 4 KDy
SKNoNUS
WIPLEK'XG P.Til

ccrnoxn SPe2SPe Y1250, TOSSPWNP s 2P TI2Pe TOSP ¢ MF [21)4RRO{10) 4 RRNC
l"'hllbllcl oRINE10) ¢ ANPKIZ1D ¢ PHASEL21) ¢ ACC,uCYCLELZ) ) o ARPRDBI2L) P
SHUEGE2R }4KGAINR
CCAMON 1
DIMENSION NUSIS5),HASLS) JNYHS{5),05L6) »ROCTR{10),R00T1810),C(5)4KCE
$4)2QUFLE3)4WUF2{)) ,RR1{2) ¢RR212) sR11L2) 2RI2{2) +CCLA) yRR(3)4COFFI LG
!lnlll!:-ullhxl €3)2COF(3}eREL2) +RIN(2)oROOT (122 COFF (2) KKK {21) oKW
3$515).PLB8)

THE 3 *IF* STATENENTS BELOW OECIDE WHICH ROOT-EXTRACTION
SUBRGUTIME TO CALL OEPENDING ONM THE VALUE OF MITHE ORDER CF THE
PCLYNOMIAL) .

IFIN.EQ.4IGC TO 3
TF{K.EG.31GC TQ 2
IF{M.EQ.2)GC TO 2

THE SUSROUTINES SINGLEs QUADs CUBE, AND FUOUATH SOLVE (THE SOLUTION
15 ATHIEVED IX CLOSED FORN AND THUS RECUIRES WO 1TEAATIVE

PROCECURE) FOR RGOTS OF FIRST, SECOND, THIRD, AND FUW“‘ GRDER
PCLYNCNIALS, RESPECTIVELY,

CALL SINCLELCCFFI,ROOTR,ROOTL)
GO 10 4

1 CALL QUADLCOFF1,ROGCTR4ROOTL}
GG TO 4

2 CALL CUBELCCFFI,RODTR4ROOTID
€0 TO 4

3 CALL FOURTHICOFF]1,ROOTR,RO0TI)

THE FOLLOXING CARDS TEST THE ROOTS OF THE PGLYNONIAL ¥0 CHECK TRE
ACCURACY CF THE ROOT SOLVER SUBROUTIAES. IF THE VALUE OF TST IS
TOD LARCE A WARNING MESSAGE [S PRINTED.

4 00 & I=l,M
;::l l;Km’l.!(lmll(ll-ll:(\ﬂl'l.(llI
TSTeDCAPLXICOFFL(1),2EROD)
AJanel
o s g
'lST-TSl‘OCOFFH-H'PU)"(J-ll
5 CONTIN
IF(CDUS(TSU-LEJCC)GO T0 &
MRITE[3.100)PL1),TST
100 FORNAT(1X,°ROOT = 93,2615

IHEN SUBSTITUTED IKTO ITS POLYMOAIA
$. FAILED TD LDAE WRTHIN TeOee/91Xy *TRIS VALUE OLFFEREOD FR
SON ZERO BY %,2015.8,° TN[S ll?tl!i EITHER A ROUKDOFF ERROR WHEN
STESTING THE ROOTSY,/s1X,*{ACC TOO SMALL} OR THE VALUE 0-01 USED TO

‘l COIPAIE WITH TEST IN SUBRDUTIKE FOUATH IS YOO LARGE

1 IS A COUNTER MHICH DETERMINES THE NUNBER OF ROOTS WHICH HAVE
BOTH A REAL AND AN IMAGINARY PART.

382

VOO PN

LELLEGL L LR LYY

LLLYLY Y

oA ANANANAANARRAONANRANNOANA

-

e

-
-

-
5

1TH 60TH
THE NEXT 25 CARDS 15 A PRDCEDURE WHICH POSITLONS ROOTS M
REAL AND IMAGINARY PARTS IN THE FIRST L POSITIONS AMD ;:EE:EP:[
NITH IERO IMAGINARY PARTS IN '"ENNSII{E:: ;l‘l:;;lmo"; CORPLER:
IF THERE ARE 4 RCOTS, TMO WITH OANL A P53 AND THE AEAL RODTS
WILL BE IN POSITIONS 3 AND 4, Ly Ko AND KK ARE COUWTERS USEO TO
FACILITATE THIS PROCEDURE.

1 IS A COUNTER WHICH DETERMINES THE NUMBER OF ROOTS WMICH HAYE
2OTH A REAL AND AN IMAGINARY PART.

i=n

N IS A CGUNTER NHICH PREYVENTS THE OROER OF THE POLYNGHIAL FRON
BEING DESTRCYED.

A=H

L=1

KK+l

KK=0

00 8 J=l,h

IF(DABS(RGOTIN) 1.GTLACCIGO TO 7
Is]-1

RUOTIIK)=ROCTI(J)
ROQTR(KI=ROCTRIJ}

G0 70 8
RCOTICLI=ROCTICI)
RCOTRIL)=ROOTR(JD
Let+l

CONTINUE
1F(XK.£Q.0)G0 TO 10
KIwK=KK
ROOT1{N2=ROGTILKT)
ROOTRIN}=ROCTRIK )
NeN-1

KXeKK=1
IFIKK.N.GIGD 1010

AT THIS PCIAT THERE ARE | ROOTS THAT HAVE BOTH A REAL ANO AN
IMAGINARY PART ARD {M-1) ROOTS MITH JUST A REAL PART.

THIS PART OF THE PROGRAR OETERMINES THE LARGEST REAL PART OF THE
ROQTS ANO RANKS THEM FROM THE 80TTOM IN THE L POSITIONS AVAILABLE.

RHAX=ROOTRI1)
X

-
lF(l-!Q-ﬂl G0 T0 13

o119

lFlDABSlim‘lRiJl) GT LARAXIR=J
1F{DABS(RGOTR(J) ). CT.RMAX) RMAX=ROOTREJ)
CONTINGE

RSAVERSRCLIR(I)

RSAVEI=RCGT1I11)

RCOTR{I)=ROQTA(K)

ROQTI{I1)=ROCTI(R)

ROOTRIK. SAVER

RODT I(X)uRSAVEL

No]-2

0o 12 J
"‘IDABSIlIAX-lUOIR(Jll.LE.ACCILlJ

CUNTIRUE
RSAVER=RCCTRIN)
RSAVEI=ROOTIIN)
ROOTR{NI=ROCTRIL)
ROOTI{N)=ROOTI()
RCOTR{LI=ASAVER
RGOTI(L)wRSAVE]

THE OUTPUT FOR BOTH RUMERATOR AND DENCMINATOR 1S PAINTED IN A FORM
KHICK REQUIRES TWO OSCILLATORY MOOES. IF ONE QR BOTH OF THE KODES
JARE HOM-CSCILLATORY THEN THE FOLLOWING PROCEDUAE IS USED:
1) THE DAMPING RAT10 1S CHOSEN TO BE THE SMALLER MAGNITUDE DF
THE REAL ROOTSe SINCE THIS RCOT WILL DOMINATE IN THE TIME
OCMAIN (A KEGATIVE DANPING RATID WOULD [NOICATE AN
UNSTABLE NOOE).
2) THE TIME TO DARP TO 30X AND 5% OF THE ANPLITUDE ARE
CALCULATED BASED ON THE ABOVE OAMPING RATIU. THUS, FOR AN
UNSTAZLE SYSTEM THESE TEMES WILL BE NEGATIVE.

THE REMAINING POATIUM OF GETRDT CALCULATES VHE WATURAL HEQUENCIES
NP L WNSPD, DANPING RATLOSI2P € I5P), TIME TO OAMP TO 1
AIPI.ITUDE"’IZP & T125P)» AND SEVILING 1"‘5(705? 13 1055?’- TNE

5% OF THE ORIGINAL ANPLITUDE,
THE SIJFFIIES P AND SP REFER TO CSCILLATCRY MODES FOR THE MUMERATOR
CR THE DENOMINATCR DEPERDING TN THE EQUATION BEING SOLVED .

THE SHOAT PERIOD AND PHUGOID NATURAL FREQUENCIES ARE DETERMINED oy
A RAKKING OF THE MAGMITUDE OF THE REAL AND IMAGINARY PARTS OF THE
RCOTS, THE LARGER MAGNITUDE REPRESENTS THE SHORT PERIGD MODE. 1IF
THERE 1S CHLY ONE CSCILLATORY MODE THIS MODE 1S REFERRED TO AS THE
SHORT PERIOC RODE AND THE PHUGOID MCODE RATURAL FREQUEKCY 1S
PRINTED AS ZERO. MHEN GETROT 15 USEC FOR A NUMERATOR PGLYNOMIAL
THE SKORT PERTOD INFORNATION IS PRINTED AS A NUMERATOR DSCILLATORY
MODE{SINCE A CUBIC 1S THE LARGEST NUMERATOR POLYROMIAL POSSIBLE,
THERE ®ILL BE OKLY ONE OSCILLATORY MODE AT MOST).

1FIN.EQ.1)G0 TO 17
IF(M.EQe2.AKD.T.EQ.01GQ TQ 18
IF{M.EQ.2.AND.14£Q.2)G0 TO 21
IFII.EQ-J.AND- «£Q.0160 T0 22
IF( o€ EQ.
AN,

(KeEQa4.AND.1.EQ.2)CO TO 3.
BNL#DSQAT (ROQTRI3) ROOTR(3)eROOTI(3)*RACTI(3))
MN2=DSQRT(ROOTR{ 1} *ROOTRIL ) +ROOTI{1}*ROATI(1))
IFLUN1L.CTWN2)G0 TO 18
MNSPWN2

WNSPERNL

NX=30

RPN

IF(HX.NEL20)GO TO 18

s COTRE1)/WNSP
TOS5P=(2,9957}/{ ISPONNSP)
T125Pa( 6631470 /({Z5P e uNSP)
2P=—ROCTRI3}/UNP

TL2P= (6931420 /L 2POUNDY
T05P=12.9957) /(2P wipP)

GO 70 35
2SP==ROOTRII}/UNSP
TO55P={2.99571/ L LSPOUNSPY
T125P=(+69314T} /12 SPoWNSP)




17

1

20

2

»~

26

2

-

o

1P==RCOTR(1 ) /MNP
TO3P=(2.9957)/{ZPe WP}
T12P=(4 693147}/ (ZPERNP)

GO 10 35

WNSPe0,0

WHP=0,0

=RGOTR(1)

0o
25P,693147/25P

T055P#2,9§57/15P

T05P=0,0

T12P=0,0

¢Q 10 38

IF(DARS{RCOTR(1) 1,67+ DABSIRGOTR{2))16GO TO 19

215p==RCOTR(L)
IP==RIOTRI2)
)

710 20
25P==RGOTR(2)
1P=-RUOTR(L)
WSP=0,0

9957/1P
25P=,093147/15P
T035P=2.9957/25P
0 10 35

T05P=0,0
WNSP4DSART(RCOTR{11OROCTRILI+ROOTI(1I0ROOT LI}
253P=-ROATRI1}/WNSP

T125P=, 6931477 2SPOANSP)
TO35Pe2,9957/1ZSPeMNSPY

60 10 33
RAX=RCOTR{LS
Re

Lo 23 J=3,3
JFIDABS{RDOTREJ) JoCT o RAXIR=J
TF{OABSIROOTR () 14GT «RAX)IRAX=ROOTRIJ)

CONTINUE
RSAV=RGOTR{I}
ROOTRI3}nRAX
RCOTA [K) wASAY
IF{DABS(ROOTR{1)3.CT.DABS(ROOTR{2)))GD TO 24
15P=~RGATR(1)
1P=-ROGTR(2)
G0 10 25
15pa=RGOTRI2)
IP=-RCOTR(1)
WS

T1035P=2.9952/25P
60 70 33
Wp=0.0
1p==RCGOTRLD)
T12P=,893142/2P

T0% 9957/1P

WHSPeDSQRT{ACOTR(1 }*ROOTR{1I¢ROOTI (100R0CTIIL))
ISP=-ROOTAL1) ZMNSP

T125P=e69314T/7L25P suNSP)

TO55P=2.9957/{LSPeMNSP)
GO 10 35

RAX=RCOTR{1)

Kel

0O 28 Jsl,4

IF{DABSLRCOTA(J) 1o GT4RAXIK=S
IF(OABSCRGOTA(JS )2 GT« RAXSRAK®ROGTRIS)
COMT INUE

RSAV=ROOTR(A)
AOGTALA)sRAX
ROOTR{K} RS AV
RAXSROGTR{Z}
Ka.

13
B0 29 Ja1,3
TFLOABSIROOTR{J) )oGTRAX) K=
LIF{DABSLROOTRES) )4 CT o RAXIRAXSROOTREID
CONTINUE

RSAVSROQTRLI)
sRAX

wRSAV

tROOTREL) ).CTLOABS{ROQTR{2)} )60 TO 30
I5Pe-ROGTR(L)

1pe-ROCYR(2)

0 10 31

LSP=-ROOTRL2)

g—-wmnm

3
WNSP=DSQRT{ROOTR{L ) PROOTR{1)#ROOTILLI*ROOTIL1} )
I5P=~20OTR{1) /uNSP

ZSPONSP)
(ROOTR(Y) JoCT-0ABS (RGOTRI4IIICO YO 33
Dl-angfl(!)

2P=~R0OTR(4)
125P=12,9957)7{25POUNSP)
SI3L4T/LZSPOUNSP)

noARnNON

LYY

SUBROUTINE FOURTH(C)ROOTR4RODTY)

THIS SUSRCUTINE FACTORS A FOURTH ORDER PCLYNCNIAL 8Y 4 CLOSED FORM

PROCEOURE WHICH FORNS 2 QUADRATIC FACTORS AND THEN CALLS &

GUADRATIC FACTORING SUBROUTINE, QUAD: TO OBTAIN T

HE FOUR RCOTS.

THE PROCEDURE WAS TAKEN FROM SINTROQUCTION TO TRE THEORY OF

EQUATIONS® BY HeBa CONKMRIGHT.

INPLICIT REAL#B(A-H,0-1)

ODUOMEWN -

REALSS M5 1YY, HUNNy NDXsHQ o HIN KUS yNAS ¢ NTHS s KGATNo KT o XKRODT o KXR o NHS 10
D;:‘ttn:mu’ctsl.K::H).QIJFHIJ.OW-ZI!).I\MI:).szlz).ln(zhkl!lzhn u
$OOTR{10F,ROCTIL10) 12
PC{4)/CLS5) 14
QaC{31/CL5) 15
RaC(2)/CIS5) 16
S=C{1)/CL5) 17
e 18
XC{3}m=05%Q 19
KC(2)m02588 POR~4.0°5)
KC(1)921250 (4,09C0S-PoPOS=ROR} 29
HKCm [3.0KC (4} #KCI2)-KCI3)#KC13) 1/9.00KC141#XC(4) 21
GRCm(2.00KC (3)9KC3IOKCI31-9.09KC (4 19KCL3) 9KC( 21 427, 0OKCL4) #KC 4D 22
SXC02))7027.COKCEA) SKCIAIOKCIAD) a
RAD=GKC®GKC +5004HKCEHKCOHKC =
IF{RAD,LT.0.0)60 70 3 2
UXCa ( (~GKC4+DSQRTIGKCOGKCH4 «OPHKCOHKCSHKC)] /240) 6
RTUKCwDABS{UKC)#w,333333333333333 a
UXCaDSIGNIATUKC sUKC) 39
VKCs~HKC/UXC 30
KROOT=UKCHVKC-KC(3 1/ 13.08KCL41) 30
1 BaDSQRT(KRODT*KREOT-S) 32
ASOSQRT(2.0KRCOT+PIPO.25-Q)
TESTa24DVA®BIR-KROGT P 3:
IF(TEST.LE..013G0 T0 2 £
——i
TEST=2,.04A¢3¢R-KROCTOP 38
IF{TEST.LE..OL)GC T0 2 37
ek s
froity 39
TESTaZ.00AB4R-KLO0T*P 40
IF(TEST.LE..01)GC TO 2 :;
~A
2 GUF1(3)s1.0 43
QUF2{31=1.0 4
QUF1(2 43
QUF2{2)= 50PeA} hd
QUF1(1)=KROLT-8 A7
QUF2{1)=KROCT+B Az
CALL GUACIQUF1ekA1.RI1} 49
RLGTR{L)sRR1(1} 50
ROOTR{2)=RR1(2) 51
RCOTI{1)=RI1(1) 52
ROOTT(2)=RIL(2) 53
CALL GUADIQUFZ4RR2:R12} 54
ROOTR(3}=RR2(1} 35
RLOTR(4)=RRZ(2) 56
RODTI{3}eRI2(1) 571
ROQTI(4)=R12(2} S8
RETURN 59
3 THETA=DARCDS [-GKC/ (2. 09DSQRY (-HKCOHKCOHKC} D} 60
TH3RTHETA/3.0 61
XROOT = 2.08DCOSITH3JSDSORT(-KKC) = KCU3)/(3.08XCL4)) 62
G0 70 1 63
END I
SUBROUTINE CUBE(CC /XReXI) 1
IMPLICIT REAL®8{A-H,0-2) 2
DIMERSION CCL4],RRA31¢RI(31yXRIIIGRICID 3
4
THIS SUBRCUTINE FACTORS A THIRD GROER POLYNOKIAL BY A CLOSED FORM s
PROCEDURE GIVEN IN ® INTRODUCTION TO THE THECRY OF EQUATIONS® BY s
CCNKMRIGHT ANO KQDIFIED BY THE PROCEOURE GIVEN IN ¢STANDARD NATH 7
TABLES® BY CHEMICAL RUBBER COMPANY. s
9
Hel3,000C14)CC(21-CC3I9CCI3))719.0CCIA) *CCLALD 10
Ge2,09CC(3)#CCI3)#CCID)-9.00CC 141 9CCIINOLLI2) #27.00CCIAIILEL4)OCC 11
$11)0/(27.00CCIANRCCIATCCI4}) 12
RAD=G9G+4 .0 ¢HOHSH 13
IFIRADJLT.0.01G0 10 3 14
URODT3=(-G+OSART(GS+4+ OPHOHIK) I /2.0 15
IF(UROOT3.LT.0.0)G0 TO 1 16
URDOT=URGOT 39%.333333333333333 17
G0 10 2 18
1 UROOT={-UROOT3)#8,333333333333333 19
URCOT=~UROOT 20
2 VROOTa=H/URCOT 21
RR{1)=UROOT +VROOT 22
RR12) 8=(UROCT+VRCOT) /2.0 23
RR{3)=-{URDGT+VRCOT) /2.0 24
RI(1)%0.0 25
RI$21=(URGOT-VROOT 3¢ { 4866025403784 ) 26
RI(3)==~{UROCT-VRCOT) #{ .866925403704) 27
XR(1IRR(1)=CC(31/(3.00CCC41 ) 28
XR(21wRRA21-CCL31/ (3.08CCT4)) 29
XR[3)aRR(31-CCE3)/ {3.00CCL4)) 30
XI(1}aR1(1) 3
XI{2)eR1{2) 32
X1t3}aR1{3) 33
60 Y0 & 3
3 THETA®DARCOS(~G/(2.0¢DSQRT (~HOHON) ) ) 3s
TH3®THETA/3.0 3
X1(11a0,0 37
XI(2)e0,0 s
X1(31%0,0 39
XR{13w2,09DC0SI THII®DSQRT 1=H) 42
XR{2)®2,09DCOS( TH3+2. 09439510239 2) »0SQRT (~H) 41
XR(3)a2,000CASC I3 44 LBETI0204T04) $DSART(-H) 42
SUB=CC133/{3.08CCI4)) 43
XRU1)=XR (1} ~SUB 44
XR(2)=XR(2)-5UB 45
XR(3)aXR13)-5U8 45
4 RETURN &7
END
a8

383



SUSROUTINE QUADLCOF.RERINY SUBROUTIHE BODE(L,J3¢KNF}

LY

noo

1
2 c
IMLS SUBROUTINE FACTURS A SECOND GROES POLYAONIAL 6Y ™E 3 € THIS IS A SUBROUIINE WHICH CALCULATES THE INFORMATION NEEOED TO
QUADRATIC FORMU s o A oY usinG 4 c CONSTRUCT A BODE PLOT DMCE THE NUMERATOR AND DEMOMINATOR
5 c POLYNGMIALS HAVE BEEN FACTOREO. THE IKFORMATION 15 TRANSFEARED 70
IKPLICIT REAL®SLA~H,0-2) & c THE MAINLINE BY USING A *COMMONS STATENENT. THE FREQUENCIES ARE
DINENSION CCF(3),RE(2),RINC2) 7 € GIVEN BOTH IN RADLANS PER SECOND AND CYCLES PER SECOMD. ~THE
DIS*COF{219COF L2 }~4409CCF {31 4COF (11 8 c AMPLITUDE RATIO 1S GIVEN BOTH AS A PURE NUMBER AND IN DECTBELS.
IFIDIS.LT<0.0) GO T0 2 9 c THE PHASE ANGLE IS GIVEN BOTH IN DEGREES AKD RADIANS.
uu:- -cc:(z:oosanlmsn)/(z.o-:oﬂall 10 c INPLICIT REALOB{A-Hs0-2)
RE{2)=1~COF (2)~DSQRT{DIS}}1/12.09COF (3)) 1 A=Hy
RIK(1120.0 12 REAL®8 K5, LYY, MU, MYy HOWoHA o MINS KUS s KAS ¢ NTHS s KEAIN  KC o KROOT ¢ KKK 4 KOs
RINIZ180.0 13 SN, HHS s XDSAVE JKHSAVE
GO TO 2 1% N WNSPISP,T125P,TOSSPyNNPsZP»T12Pe TOSP oWF (21 J¢RROI10} oRAN(
1 RE(1)==COF{2)/(2.0¢COFI3)) 15 $10) (RIDI10) RIN[10]) s AMPR(21DsPHASES 213 (ACC sMCYCLE(21) dANPRDBIZTD 4P
RECZ)=REL1) 16 SHDEGI21) 1 KGAIN
RIMLLI=(~DSQRT(-CIS) 1/ L2.00C0F(31) 17 COonXoN 1
RIN{2)=(DSQRT(~D15))/(2.09COF(3}) 18 DINENSION KKX(21}
2 RETURN 19 00 9 P=l KWF
ExD 20 ARPD=1.0
Xpw1.0
DMASEDlﬂ 0
00 4 J=
xnunun.zo.o.mw 01
G 70
1 uvo-nnwcusurul—nmun
IFLRF IN-RIGLI) LT .0.0)C0 TO 2
o Tats 2.0
€0 To 4
a
S0 1o &
3 ANPO=OSCRT LS (~F (N}+RIDIIFI/RROL SIS 09201 GIPANPD
nusw-—:uwu:-.mumnuul(-nuunnomo
KCSAVE=XD
Kp=-REO(J1wRD
4 CORTIME
KE=EGAIR
AFPR=P.C
oC 8 I=led3
rruu.nln-!c.c-au:u s
o T
s Mm-um-mst-nm-nmuu
1F§uF CN3~RINEED.LT.0.0)60 TO &
72.0
G0 10 8
& PHASER=PHRSER-3.1415926536/2.8
ca 70 8
¥ ANPN=OSQRTC((=NF(M}SRIN([3)/RARLLII #92¢1.0) ¢ANPH
PHASEN=CATANS (=R IN (1) #MFINI)/E—RANEL)) DSPHASEN
KNSAVE=KN
Kiw=RRX( 1 IoKN
IF LT7.0.0) 1415926336
8 CCNTINUE
KKK M) =KN/KD
AN2R (W) «CABS{KKK{N)) S ANPH/ANPD
AMPROB (H}#20.0#DLOGLO (ARPR(M) ]
PHASE (M) mPHASED® PHASEN
PHDEGIN1=PHASEAN) 857295779513
WCYCLELRP=UF{M)/(2,043.1415926530)
9 CONTINUE
TURN
END
SUBAGUTIRE SIMGLE{COFF ,ROOT,RCOTI) 1
2
TH1S SUSKCUTIRE FACTORS A FIRST OROER PGLYNGNIAL. a
3
INPLICKT REALOS(A-H,D-2) 5
DIXEMSION ROOT(1),COFF{2]14R00TLLILY ®
00T KL I=—COFFILMTOFFL2) 7
ROOTILLI=C.0 5
RETUAR >*
10

384
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LATERAL  PROGRAM

GIVEN VALUES CF THE STYABILITY DERIVATIVES AND AIRCRAFT
CHARACTER]STICS THIS PROGRAM PERFORMS THE FOLLOWING:
3) CALCULATE DIPENSICNAL STABILETY DERIVAYIVES
2) FCRMS THE TRANSFER FUNCTIONS» TFUS)aN{$)/D(S)
3) SOLVE FCR ROOTS OF D{S) AND NIS}

%) CALCULATE NATURAL FREQUENCIFS, DAKPING RATIOS, TIME YO DArP
TO CNE-HALF AMPLITUDE, AND SETTLIMG TINE

%) PRODUCES INFCRMATION NEEOED FOR BODE PLOT COYSTRUCTION

THE DERIVATION CF THE EQUATIONS OF MOTION ON wHICH THIS AMALYSIS 1§
DASED WAS TAKEN FACH 'DYNANICS OF THE AIRFRAME', BUAEAU OF
AERCNAUTICS REPCRT, AE-6l=411.

THE ANALYSIS OFSCRIBED ABQVE MUST MEET THE ASSUMPTYONS IMPOSED ON
THE EQUATICAS OF MOTION WHE4 THEY WERE DERIVED.
TRESE ASSUKPTIONS AREs

1) THE AIRFKANE IS ASSUMED 10 Bf A RIGID BOODY.

2) THE EARTH IS ASSUMED TO BE FIXED IN SPACEs AND, UNLESS
SPECIFICALLY STATED OTHERWISE, THE EARTH'S ATMUSPHERE 1$
ASSUMED TO BE FIXED wITA RESPECT TO THE EARTH.

31 THE WASS GF THE A[RPLANE [S ASSUMEO TO REKALN CONSTANT FOR
THE DURATION CF ANY PARTICULAR OYNAMIC ANALYS1S.

&) THE X-L PLANE 1S ASSURED YO PE A PLANE UF SYAMETRY.

5) THE CISTURBAMCES FROM THE STEADY FLIGHT CONOJTION ARE ASSUMED
T BE SMALL ENCUGH SO THAT THE PRODUCTS AMD JQUARES OF TH{
CHANGES IN VELCCITIES ARE NEGLIGIALE IN COMPARISCN WITH THE
CHANGES THEMSELVESe ALSD, THE DISTURIANCE ANGLES ARF ASSUMED
TN BE SHALL ENULUGH SO THAT THE SINES OF THESE ANGLES MAY BE
SET EQUAL YO THE ANGLES AND THE COSINES SFT LQUAL TO ONE.
PRUOUCTS GF THMESE ANSLES ARE ALSO APPAOKIMATELY ZERG ANU CAN
BE NECLECTED. ANUs SINCE THE DISTURJANCES AXE SMALL, THE
CHANGE IN ATK CENSITY ENCOUNTERED 8Y THE ATRPLANE OLRING ANY
C1STURBANCE CAN BE CONSIOEREC TO 8¢ IERD.

&) OURING THE STEAQY FLIGHT CONDITICN, THE AIRPLANE JS ASSUXEQ
T0 BE FLYING WITH WINGS LEVEL AND ALL CUXPONENTS OF VELOCETY
ZERQ EXCEPY U SUB 0. W 5SUB O = O BECAUSE THE STABILITY AXES
WERE CHOSEN AS THE REFERENCE AXES.

T) TKE FLOW IS ASSUKED TG BE GUASI~STEADY,

THE FOLLOWING CARDS JMPLY THATY THE PROGRAM IS EXECUTED IM OOUSLE
PRECISICH.

IReLICST REAL'BII-H.D-ZI

CCHPLEX®L6 P,T

REALSS NS.!GAIN.KC'KRUUY.KKK.XD.KN'IXZ-IXK.lleLP.NR-NP.Ll.LB-N‘ﬂ,L
BINSNIN APHI ¢ KPST 4 NS sLVeNY

COHMON  MYSPyZSPsT125P e TOSSP MNP +ZP o TA2PTOSPaWF(21) 4RROC10) ¢ RRN(
$101 yRIOI101oRIN(10) tARE21) o PHASEL 2D ) o ACCWMLYCLEC2D HoARDB(21) 4PHOEG
$02L) XKCATN)RUNER

CCHMLY

DIMENSION 1SCSINPHILS PSS E(52,05¢81sROOTRELCEROITTCIO), CO5 (KCL
$41CUFLIYQUF2E )y RXY (2] 4KR2(2)4PI1 (2D ,RI2(2)4CCLLI4RRIZ) (COFFELE
$IgEI13) oXRI3)pXT43) +COFE3ISREC2)4RIMI2IGROITELD JCOFFL2) o KXKI2D ) ¢ PE
€}

THE READ STATEPENT IS THE INPUT GF ALL NCN-OIMEASICNAL STABILITY
DEFIVATIVES, EXCLUDING CONYAOL SURFACE OERIVATIVES.

REAOC] ¢ 1G0ICYBy CLBICNG pCYPLCLO CNP o CYRVCLR)CNR

FCEMAT[BF1C.6/F10.8)

wRITEL3,201)

FORUAT(1X,121¢ T ATERAL S\'ABILI
STY DERIVATIVES® y46X 171X, 08

$9119K,10%,/,1X, 2119X» )
iﬂlYEIJ'ZDZJCYB.tlbyCNl‘rt'IP,CI.P:CNP.C'IR.CL»I.C'G
FCANAT{1X '  CYB % ,F102694X,°C!

2F10. 64X
IX, *»

INPUT OF PERTINENT AJRCRAFT CHARACTERISTICS

BEADI1, 101 JREO¢tySe MSCHeB GCOSCMGSIAGH IXX o IX 2,122
FLFMAT(4F10,5/%F10.5)

GLOSSM AND GSINGM ARE THE PRODUCTS OF THE ACCELERATIUN DUE fO
CRAVITY {ASSUME = 32.2 FT/3ECee2 FOR THIS ALTITUOE WAKGEL AND THF
CCSINE ANC STNF RESPECTIVELY OF THE INITIAL FLIGHT PATH ANGLE,
GAMMA, [USYALLY 2ERD FOK LEVEL FLIGHTI,

I2Z 1S THE MCMENT OF IAERTIA ABUUT THE I AX13

IXZ S THE PRICUCT CF [NERTIA

IXX JS THE MCMENT 0F INERTIA ABQUT THE X AX1S

MS 15 THE MASS OF THE ATVPLANE

S IS THE WING AREA (F THL AIRPLANE

RKG IS THE QENSITr AT TNE ALTITUOE WHMICH THE AIRPLANE IS FLYING
U IS THE SPEED OF THT AJRCRAFT IN FEET PER SECON)

CH 1S THE MEAN AERDDYNANIC CHOAD QF THt WING

8 15 THE WING SPAN

I. 5!
17X *RHO 114G AREA
F10 -dv!lv'G'C(SlG"ll“) o F1i7e 052 7K,

855 =2 /e lX .

$5F10. 443Xy ' CHLKD 8 F10.6¢3X,*5PAN F10o s 3%, 50 SIN(GAML) =
$05F10.06¢1TXe 0" /41X pLTXeIXX 20y F10.4s3X,*1X2 ' F10, 44X
$e0IIL wt g F10.&ya5Xe 01/ olX g 07 119Ky 000 o So 1Kol 210000}, /7/)
LCOUNT=0

LCOUNT 15 & COUNTEK WHICH PREVENTS MULTIPLE CALCULATICNS OF THE
CHARACTERISTIC EQUATIONS

CRANCPN PN

A000 Ao

AL LG L LL LG LY Y

amo

coAan

cone acenan

caen

coca

LLeal,3 CONSTITUTES SILUTIONS FOX THREE OTIFFERENT NUMERATORS.
CO 31 (Lol

THE READ STATEMENT BELOW IS THE [NPUT FOR THE VARIABLES EXPLAINED
BELOW.

READ[],102)CYIN,CLINSCNINSX NURFRACT
102 FORHATIIF10.6,213,E04,7)

C¥lny CLINe AND CNIN ARE TME STABRILITY DERIVATIVES wUE TO CONTROL
SURFACE DEFLECTION. CYIA IS5 EITHER THE PARTIAL OF CY kITH
QESPZCT 10 RUDDER DEFLECTION DR AILERON DEFLECTION. THE VALLE OF x
OETERMINES WHETHER 1T 1S CONCERNED WITH RUDDER OR AILEPON.

1F K IS GIVEN THE VALUF 1 THEN CYIN, CLIK, ANO CNIN ARE PARTIAL
DERIVATIVES WKITH RESPELT TJ RUDTER GEFLECTION. IF Ke2 THEN THE
PAYTIALS ARE TAKEN WITH RESPECT TO AILEAON DEFLECTION.

NUMER DEFINES WHI(H TRANSFER FUANCTION WE ARE INTCRESTED IN, (BETA,
PHI, PS1). NUMFRwL GIVES VARIATIUNS IN BETA, NUMER®2 GIVES
VARIATIONS IA PHE, AND NUMER=3 GIVES VARIATIONS IN PSl.

ThUS, FOR EXAMPLE, IF Ke®2 AND NUMERs2 THE TRANSFER FUNCTICN Wittt
BE VARTATION IN PHI OUE TO DEFLECTION OF THE AILERINS.

ACC 15 THE ACCURACY JSED THROUGHUUT THE PRIGRAM T3 COMPARE TWD
MLSRERS TO SEE [F THEY ARE SUFFICIENTLY CLDSE.

LCOUNT=LLOUYT#1
TF(LINUNT Ok L2)G0 TO &
IFIR.NELIIGO TQ 1
WRITE( 3,204}
206 FORFAT(1SXs981100), /415X, 08 ,96X, 984, /,15X, "
SAUDCER ODEFLECTICN*431Xy* #¢)
GO 1O 2
1 RRITE(Y,205)
202 FORPMATIISX,99( VeZ915X
SAILERON DEFLECTION® (31X

*132Xe "RESPONSE TO

* 331X *RESPCNSE TO

I IALARY A2 L L
*)

1 [h = F10.6
X = .lz-&x.'lcc megFla,0y

CN &X
-%Xv"'vl;hl.?ﬂl Yetsrd

b LIN =
$8X a0 /y15X
CALCULATION Of DIMENSIORAL STABILITY DERIVATIVES

AsRKQOUS
FesRHQs U Se
HaRKO®UsSeBs R
OwRhOSUSULS
EsRKOOLeUSSeD

Ay Fo He Op € ARE JUST CONSTANTS USED TO CALCULATE THE DIMENSIONAL
STABILITY OERIVATIVES,

YywAvCYQ/(2.0445)
LVsFeCLY/(2.0%(XX}
LgsysLy

Nv=FiClﬂll(Z 2]%24)
Nasurh!

VP-F'CYPI(A s}
LPaHeCLP/ {4, 00 [XX)
NPaHeCN2/14,00120)

YraFSCYRZ (4.CoNAS)

LINaESCLIN/(2.0% XX}
NIN=ESCRIN/T2.08122)

COEFFICIENTS FOR TRAMSFER FUNCTICH

DENDATAATOR CGEFFICIENTS, NS{S)Se4+DS{4)Sea3eDSI3)Sae24DS(2)Se
C5¢1), WHERE S REPHLIENTS THE LAPLACIAN OPERATGR.

O3¢52ad.O-LIRZOIXZI/LIXXPLLLY

DS{&)aYVeLLIXZOIXL}/UTXXOILLI=1 0} ~LP-NR-CIXZ/IXX)ONP=( [XZ/12L}OLR

DS mYYe(LPoNRCIXZZIXX) P LIXZ/IZTIOLRIPNROLP +LOSL LIXT/IZZIO( 1
$O-YR/UI-YP/U 4080 ({1.0=-YR/UI=(IXZ/{XXI*(YPFU} 1=-NPOLR

D512)m~NA® (LROYA/Ur (1 XZ7IXXI®(GLOSGH/UNSGSINGH/ULPS(1.0-YR/U) JoLB
$O(rPe . 0-YR/UI=[1X2/J2TISGCSTNGH/U~GELSCVUSHROYPLUI+YVO (HPOLR-NRS

ey
05(11a100 (ARSGCASGHN/ J-RPOGSINGM/U FeNBOILP*LSINGN/Y-LROGLOSGM/U)

KUMERATCR COEFFICIENTS FOR SIDESLIP YARIATION, NS[4)See3eNS[3)5ee2
#NS(2) S4NS11)

KSERPmiYIN/U)# L1 .0~ LIXZAIXZIZLIXXI22) Y

NSE2I=iYIN/U NA-LP-lllllZl-l!l'NPIlKll'I.lh‘('PIU-(lll/llll‘ll-D
$=Yir /1) ) eRIRO (LYP/U) STIXL/IXX) 0-YR/U}

NS{21=(YIN/UIS(LPONR-LRS -?l'Llh'lGCﬂSGIIU-'P'NﬂIU-NP'll.ﬂ-'llul’(ﬁ
SSII.G'(IUI‘I IXZ7122))sNINSIGCOSGMe I XT/ LUOIXX) $YPOLR/UCLPO(1.0-YRIUI
$CSIKGH/U.

hst1) '(NlNIUl.llR'GCDSGN-LP' SINGMI+ ILIN/UI S (NP OGS INSN-NROGCOSCN)

NUNERATOR COEFFICIENTS FOR RULLING VARIATION, NPHI{4)Ses3e
NPHLL3) S 82eNPHILZ) SONPRICL)

NPAL(A)=LINeNINSIXZ/TXX

NPHI{IVaL INO (=~ YV=AK F e NINPILR=IXZOYV/ ITZI LY IN/GY S LLO? [X24NO/IXKD
NPI{2)sYVOILINSNR=NINT*LR)=IYIN/UI O LLBONR-LRONSI +[1.0=-YRIUIS {LIN*N
S0=niveLR)

NPHLC 1= {GSINGHZUI® (NINSLS-LINOND)

COLFFICIENT:
SRPSLL3)Sew

FOR NOHMERATOR FOR YAWING VARIATION, HPSL{4)Ses)
SMPSTI213eNPSIITY

Koo fragaNIneIX2OLIN/IZ

RESTCI)aNINS (=YV=LP)oL IN®(=1XZoYV/LZZ¢NP I LY IN/U) O INI e I XIOLB/T2L)

MRS {2)aNINS [YVOLP=YPOLR/U) eLINSLYPONB/U-NP oYV ) ¢ [ YIN/U) ¢ {NPOLB-LP*

)

HPSE[1)=1GLOSGR/UI® (LINYRS=NINeLB)

H»(l"l!.ZﬂTlDS(Sl.DS(‘)vﬁS(!l-DSlZI'DSIthS(U -NSI)I.NSIZI.NSIII-

SNPIL{S ) JNPUT (5] o MPHIC 2D s KPHIC LT o NPST (S HPS T
20T FQeFATL//772%0123(% %)

SCECFFICIENTS FQS THE D

BLLT(I=21,232

345X, *05(A)

s S¢

oF10.4,5X¢
F10.4s5Xs *NPHI[1) = ﬁlﬂ.ﬁ.!‘v

27Xe PNPSTL4) % 4F10.425% 'NPST{3} &
0.’..’!.'?1?5](!! 'y F10.4,3X. I.ZX-"'-

$eF10.4,45X, N?SHZ) -
$12tx 0 /702Xp123( %))

THE GO LOSP BELCW DETEFMINES THE ORDER GF THE PCLYNOMIAL IN THE




LLLLY YT,

LLY.Y.

noon nohon

LY. T, T annonen

NNNOn 0000

CENOMINATCR, MD.

00 3 1#1,3
T1FCDABS(DS{1}) 4CT. ACCIND=I-2
3 CONTINUE
IFIRD.KELOICO TO 4
XIT

1F WD = Op THERE IS NO CHARACTERISTIC EQUATION, TREREFORE THME
PROGRAN IS TERXIRATED.

TRE 3 ¢IF% STATERENTS BELCM TELL US WHICH SET OF KUMERATOR
COEFFICIENTS TO EVALUATE DEPENDING ON THE VALUE OF NURER.

4 IFINURER.EQ.1)C0 TO S
IFCWIR-EQ-ZIGU 07
1144

l'l'SZ I
SINATOR lDﬂTS' .SH.

THE OO LOGP BELCW DETERMINES TRE OROER OF THE POLYNOMIAL IM THE
NUKERATOR, RN.

DO & Imle4
IF(DABSIKS (1)} oCToACCINN=I~]
& CONTINU
lf(lN.NEoﬂlw 0 11
CALL EX
7 lﬂ"!l .209]

209 FO! l’l'l' 130(%6%1,/91X, *#%, 128X
39,48 LUTECN FOR ROLLIKG VARIATION®
$x,38¢ ---).ux.n-./.lx.“-.lzu.
$¢*DEKONIKATOR ROTTS® 58Xy 00%, /42X, 089,128K,000)

DO & =144
TFUDABSINPHICIN) SSTACCIRN=T-%
8 CONT
lHl\Il.lE-ﬂll‘-D T0 11
MRITE
210 mlunnx.'n--.u)
L EXtY

(231N
9 WRITE(3,211)
211 FORMAT(1%,  130(°9%),/s1X,'#%, 128X
$0,45X, *SOLUTICH FOR YANING VARIATION®
X290 0=1) 54X, 982, /01X, *
$9*DENOMIKATCR ROOTS® o 56X,

00 10 Ial,4
JFLDABSINASILIY) CTaACCIMN=L~]
10 CONTINUE

IF{RR.NELCICO 30 11

MRITE{34210)MN

TALL EXIT

CETROT S A SUSROUTIME HICH, USING OTHER SUZROUTINES, CALCULATES

ROATSe DARPING RATIOS, ANMD KATURAL FREQUENCLESs AND THESE ARE

TRANSFERRED TO TKE MAIRLINE 8Y USE OF A *COMMON® STATEMENT.

11 CALL GETROT{DS:AD,RRD,RID}

THE FOLLOMING FOUR CARDS ADD A 2ERD OEXONINATOR ROOT IF THE
TRANSFER FUMCTION IS NOT FOR SIDESLIP.

IFINUNERLEQ.23C0 TO 12

®Da|
RRDIRD)=0.0
AIDIKD)=0.0
12 WRITECS,2L2H{JyRROCS I 2REDLIY p !

nD}
212 FORMAT{1X,*9° (48X, *ROCTL? o 11 oFlO.5,*

*J *oF10.5,4TX,08¢})

X e128Xe ' 90,/ ¢ 1%y 934Xy *NATURAL FRE
10 Xs*TINE FOR 172 DARPING® ¢9X,* SETTLING TIME®
31X UNDANPED DARPED® » 80Xy H

FOR DAMPING RATICS GREATER THAM ONE(A KON-DSCILLATORY MODE} THE
FOLLOWING FOUR CARDS PREVENT TAKING THE SQUARE ROOT OF A NEGATIVE
WUKBER WKEN CALCULATING THE DAMPED NATURAL FREQUENCY. IF THE
DANPIHG KATIOS ARE GREATER THAN ONE THER TRE DAMPED NATURAL
FREQUERCTIES RERAIN 0.0,

®D5P=0.0

wP=0.0
IFLDABS(25P).6T.1.0) GO TO 13
WDSPaUKSPEDSCRT(1.0-23P25P)
13 nlTE(J'ZIQIINS'.HDSP'ZSP"HISP-TOSSP
214 FORMAT{1Xs*#%,18X, *OUTCH Ri F9ute FP.44F10.5,11X,F10.5,
s ux.na.s.zsx.u ll."'.lzl )

CALCULATION OF VALUES GF MF FOR FUTURE USE IN THE BODE ROUTINE.
IKCLUDED ARE SELECTED VALUES OF WF(Olyely1.0,10.0,100,0,1000.0}
PLUS 5 VALUES ARCUND EACH NATURAL FREQUENCY(2 ABOVE, 2 BELOW, AND
PR‘EA:““‘L FREQUENCY) TD INCREASE BATA IN THE BODE PLOT CRITICAL

WFlli=,01
2]

J
hHle-uFlllll.lo.o
COKTENVE

KUF IS THE MUMSER OF NATURAL FREQUENCIES TO BE USED IN THE EODE
ROUTINE.

-
>

KuFub

11 AND 1K ARE COUNTERS USED TO DEVERAINE THE MAXINUM VALUE OF KWF
CEPEXDING UK THE lllHlER OF NATURAL FREQUENCIES IN BOTH THE
OF A PARTICULAR TRANSFER FUNCTION.

11=0

1Kx=0

mx.zq.olca 10 16
Q.21 6!

KELLS)el.2ennp
n({u-x.zsmo

11=1 :
IFIKWE.£Q.16)60 TO 16

386

anna

LLLLLT

fanon

DLL LYY YT

LGTLYT.YY

LLLGYY

KWFell

GETROT 1S USED TO FIND ROOTS OF A PARTICULAR HUMERATOR UEPENDING
ON THE VALUE OF MJKER.

16 IF{NUMER.EQ.LICO TO 17
IF(NUNER.EQe2)GO T
CALL GETRCT(NPSI .My RRNSRIN}

GO 10 1%
17 CALL GETROT{NS,;MksRAN,RIN)
GO Ti

0 19
18 CALL GETROTINPHLMN;RANSRIN)
19 WRITE{3,215)

215 FORMAT(1X,?#¢,36X) "NUNERATOR ROOTS® 957Xy
WRITE(39212)(JeRRN(J ) SRINLS) pIm] o AN}
IFUNURERJNEL31GQ TO 21
WRITE(3,213)

IF THE DAMPING RATIO HAS AN ADSQLUTE VALUE GREATER THAN ONE(A NON-
OSCILLATCRY MOOE)r THEN A DAMPED NATURAL FREQUENCY IS NOT
CALCULATED FOR THE NUNERATOR. THEREFORE: NDSP AND MDP ARE LEFT AS
2ERQ.

ND3P=0.0
¥0P=0.0

1F{DAS5(15P).6T.1.0) GO 7O 20
WDSP=KNSPSDSQRT (1. 0~25Pe2SP)

THE Twd MRLTE STATEMENTS BELOM PRINT THE PERTINENT [MFORMATION FOR
OSCILLATORY MODES IM THE NUMERATOR. [F THE NATURAL FREQUENCIES
ARE PRINTED AS ZERO THE MODE IS NON-OSCILLATORY.

*128X,%00 )

20 MRITEC3¢218)NNSP NOSP ISP¢T125P¢TOSSP

216 FORMATIIX.® 28XsF9e4sFL1.493XsF10.4,12KsF10s53,14XeFl0e5,22X,090,
$791X,%00,128X, %00}

21 WRITE{3,217)

217 FORMATI1X,®#*335X,581°=*),35X
$8CGOE PLOT INFORMATION® 454X,
SQUENCY® 26X, *AMPLITUDE RATIO 5X

28X "CYCLES/SECY s 1K,

35'.3!.'555&!55"1521"'

GL!
PURE® nlOX"BEClBELS HX' 'IADIAN

THE MEXT FEN CARDS ARE A ROUTIKE 10 FINO KORE VALUES OF WF FOR THE
BODE PLOT ROUTINE DEPENDING OM NHETHER OR HOT THE KUMERATOR HAS
ANY OSCILLATCAY MODES. VHE FREQUENCIES AND THE VALUES OF KWF ARE
CHOSEN IN THE SARE MANNER AS THOSE OF THE DENOMINATOR PREVIOUSLY
KENTIONED.

MOl AND MN1 ARE USED TO PREVENY HAVING IERQ SUBSCRIPTS WHEN
CALCULATING THE MJRERATOR AND DENOMINATOR GAINS FOR THE BODE PLOT
SUBROUTIKE.

ND1=MDY1
IFUNUNER.NEL1)ADLv}D
ME1=NNeL
IF(1.£Q.0G0 TO 24

11 AKO IK ARE COUNTERS USED TO DEVERMINE THE MAXIMUM VALUE OF KNF.

TFUIL.EQ.0+AND. IK.EQ.0160 TO 23
IF(I1.EQ.3.AND. IK.EQ.0)G0 TO 22
WF(17)=, SONNSP

WF(18)m. TSORNSP

WF(19}aNNSP

WF[20)wl.20unSP
KF{21)m1.250KNSP
KwFa2)

G0 TO 24

22 WFL12)=,9eRNSP
WF{13)m. T50UNSP
HF(14)aNNSP
WF(15)=1,10uRSP
KF{16)=1,253WNSP
KwFol6

&0 T0 24

23 WF(T)=, SORNSP
WF{8)m . TSONNSP
WF(9)=WRSP
WFL10)m] . 10uNSP
WF(11}w1.250WNSP
KWFull

24 IF(NURER.NE.11GD 70 25
KGAIN=RS [X¥1)/0S{H01)

THE GAIN IKGAIN) FOR THE ‘RGOT LOCUS PLOTS IS CALCULATED FAOW THE
COEFFICIENTS OF THE HIGMEST DRDER TERA IN THE DENOMINATOR AKD
AUMERATORy TFaKGAIN(S®A}(S¢B)/(S4CIIS+D)y WHERE A AND B ARE ROOTS
OF THE NUMERATOR AND C AND D ARE ROOFS OF THE DENOMINATOR.

G0 T0 27
25 IF{NUNER.NEL2}GD TO 26
KGAIN-NPN“HNIDIDSIHDII

26 KGAlN-NFSl(A‘llIIDS [L138]
27 KXWF=Xuf

THE NEXT 12 CARDS RANK THE WF*'S IN ASCENDING ORDER.
28 BAX®NF{1]
kel

CO 29 JD=2,KKWF

IFINFLID) +GEWAXILK®JD

IF(NF{I0) G MAXINAX=UF 1IDY
29 CONTINUE

WSAVSKF[KKWF)

WEAKKWE JatAX

WF(LK)=kSAY

KXKFeKKWF-1

IFIKXKF.EQ.1)G0 T0 30

¢0 TO 28

BOOE IS THE SUBRGUTINE WHICH CALCULATES ANPLITUDE RATIO ANO PHASE
ANGLE FOR EACH WF. THE INFORMATION IS TRANSFERRED TO THE MAINLIKE
BY YHE USE OF A *COMMON® STATEKMEKT.

30 CALL BODEIMD.MN,XWF)
Iu:}til).znnun 1) WCYCLECL) o ARCTD o ARDB(1) o PHASE( L) s PHOEG (1) 1m1,0K

283X Fl0.556X+F10.5,12XsFL002,6X,F10.5, 12X4F10.5,6X,F

hkl!E(!.Zl‘il
219 FORMAT(1X,*#%,128X,°#%,/,1X,130(%¢%))
lF(NUH!R NEL1IMD=MO~1
31 CONTIN
CaLL Exl'l
END
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SUBRDUTINE GETROTLCOFFI,N,RO0TR,ROOTEL

GETROT IS A SUBRGUTINE WHICHs USING CTHER SUEBROUTINES. CALCLLATES
ACOTSe OARPING RATIOS, AND NATURAL FREQUERCIES, AND THESE ARE
TRAMSFEARED TO THE MAINLINE BY USE OF A "CCNRON® STATEMENT.

INPLICIT REAL®SI[A-H)O-1)
CGXPLEX®LE PyTST
IEH.‘! WSy LYY o KU s KMy HOM, RQ s MEN s NUS s HAS s NTHS s KGATNKCsKROOT y KKK KD

a:mwn XNSPeZSPeTI2SPyTOSSPoWNP ¢ 2P ¢ T12P, TO5P (FI22 ) RROL1D) yRRNL
$10)0RI0010) yRINEIOT ¢ ARE2L) ¢PHASE (21D ¢ACC,HCYCLE(21) 4 ARDBI 2130 PROEG
$021) ¢ KGAIN  RURE
L

DINENSION NUSCS)NASTS) sNTHSI5)405(6) »ROOTR{1C) 4RODTIN10),CU5)4RCL
84) ,QUFLEI), QUF2(3) ,RR1(2) 4RR212]14RILI2) ¢RI2(2),CCL4) LRRI3 ), COFFLLS
u.uuhnm pXT13)9COF{3) JREC2) JRIMI2) e ROOT 1) 2 COFF (23 )XKKRI21D4PL

THE 3 YIF? STATEMEATS BELON OECIOE WHICH RCOT-EXSRACTION
SUBROUTINE TO CALL DEPENDING CN THE VALUE OF MITHE ORDER OF THE
POLYNGMIAL) .

IFIN.EQ.4)60 T0 3
IF(N.EQ.31GT TO 2
IFIN.EQ.2)60 TO 1
THE SUBROVTINES SINGLEs GUADs CUBE, AND FOURTH SGLVE (TRE SGLUTION
15 ACHIEVED IN CLOSED FORM AND THUS REQUIRES NO ITERATIVE
{4 FGR ROOTS OF FIRST, SECONDy THIRD, AND FOURTH ORDER
POLYNCHEALS ; RESPECTIVELY.
CALL SIHGLE(COFFIsRUOTR,ROOTI)
G0 T0 4
CALL QUAC(CLFF1,ROCTR,RCOTI)
G0 10
CALL CUBEICGFFR4ROGTR.ROOTLS
G0 10 4
CALL FGURTH(CORF1,R00TR,ROOTL)
THE FCALOWING CARDS TESY THE RODOTS OF THE POLYNOMIAL TO CHECK THE
1s

ACCURACY GF THE ROCT SOLVER SUBROUTINES. IF THE VALUE CF TST
T00 LARGE A WARKING MESSAGE kS PRINTED.

410061

[3%
Nn-ocnunmm I} 4RCDTLLID)
IERGA0.

'ISI'-DCI.PI.IICUFFI £1),26R0)

Xt

€ 5
TSI-TSI’OCCIH(J!'FHI“IJ-U
CONTINUE
IFLCOABSITST).LEACLIGO TO &
MRITEL3,100)PL1)eTST

100 FORMATEIX(0RODT = 942G15.8,° WHEN SUBSTITUTED INTO 1TS POLYROMI

$AL FAICEO TO COME WITHIN ACC OF 0.04%¢/s1Xy*THIS VALUE DIFFERED FR
4CH 2ERD BY 9,2613.8y"  THIS INPLIES EJTHER A RCUNDOFF ERROR NHEN
STESTING THE ROUOTS! o/ ¢1Xe*{ACLC TOO SHALL) OR THE VALUE 0.01 USED TO
$ COMPARE WITH TEST IN SUSRGUTINE FOQURTH {5 TGO LARGE.')

& CONTINUE

-

© o

1 35 A CCUNTER MMIOH DETERMIMES THE NUMBER OF ROOQTS WHICH HAVE
BOTH A REAL AND AN IMAGINARY PART.

THE KEXT 25 CARDS IS A PROCECURE wWHICH PUSITIGNS ROQTS WITH BOTH
REAL ARD IMAGINARY PARTS IN THE FIRST L POSITIONS AND THE ROOTS
WITH ZERO IKAGIHARY PARYTS IN THE NEXT KK POSITIONSe FOR EXAMPLE
IF THERE ARE & ROOTS, TwO WITH ONLY REAL PARTS AND YWO COMPLEX,

THE COMPLEX ROOTS WILL BE IN POSITIONS 1 ANO 2 AND THE REAL RDDIS
MILL BE IK POSITIONS 3 AND 4. L, K, AND KK ARE COUNTERS USED TO
FACILITATE THIS PROCECURE.

1 1S A COUNTER WHICH CETERNINES THE NUNAER OF RGQTS KHICH HAVE
COTH A REAL AND AN IMAGINARY PART.

Isn

35 A COUNTER WNICH PREVENTS TRE OROER OF THE PALYNONIAL FROM
BEIKJ CESTRCYED.

L)

L]

Kafiel

KK=0

€O 8 Jel4N
}FlDABS(lCDH(JI)-G'I'-ACCH‘.O 07
wj=-1
RQOTI{K)=ROCTI(I)
ROOTR(K)=RICTR(J)
KnKel

KKeKKel

GoI e
RCOTILLI=ROCTICI)
POOTRI(LI=POOTRCIE
Lutel

L
CONTENUE
1F{KK«£Q.0}60 TC 10
KlnK+KK
ROOTI(X)=ROOT (KD
RCOTR(A)=ROCTRIXID
L)
KK=KK-1
IF{KK£Q.01GA TO 10
63 10 9

AT THIS PCINT THERE ARE I ROOTS THAT HAVE BOTH A REAL AND AN
IMAGENARY PART AND (M-I} RO00TS WITH JUST A REAL PART,

THIS PART OF THE PROGRAM DEYERMINES THE LARGEST REAL PART OF THE
ROQTS AND RANXS THEM FRGM THE BOTTOM IN THE I POSITIONS AVAILASLE.

10 RRAXwACOTAC1)
o)

-
=3

lFll.Eﬁ-Dl GO 70 13
€O 1% J=1,1

lFlDlﬂS(lWTllJlI-G'olmll'-l
IF‘OIHS(N’.D[Q(J)lol"-lllxl“lxllﬂﬂﬂl“)

CONT
ISAVER-HCDTMII
RSAVEI=ROOTILI)
RODTRLLI=RIOTRIKD
RCAT{{I)eROCTIIK}
RODTRIX)=RSAVER
RCOTI{K)=RSAVEL
Nal-}

€O 12 J=)
XF(BI!S(IM!-ND“\-" VoLEALLILEY

CBNCAP N~

OO ANROANANNONNANNADANRNNANORN

12 CONTINVE
RSAVERWRODTR[H)
RSAVEI=RCOTIINY
ROOTR{K)=ROOTREL)
ROOTLN] CTI(L)
RODTRIL}=RSAVER
RODTI(L)=RSAVEL

THE OUTAUT FOR BGTH NUNERATOR AND OEAOMINATOR IS PRENTED IM A FORM
WHICH REQUIRES THG OSCILLATORY MODES. IF ONE OR BOTH OF THE MODES
ARE HON-OSCILLATLRY THEN THE FOLLOWING PROCEDURE IS LSED:
1)- THE OAMPING RATIO IS CHOSEN T0 BE THE SMALLER MAGNITUDE OF
THE REAL ROOYSs SINCE THIS RCAT MILL OONINATE TN THE TIME
DUMAIN {A NEGATIVE DAMPING RATID WOULD INOICATE AN
UNSTASLE NCOE)
2) THE TINE T0 DAN® TO 503 AND 58 OF THE ARPLITUDE ARE
CALCULATED BASED ON THE ABOVE DAMPING RATIO. THUS, FOR AN
UNSTAELE SYSTEM THESE TINES WILL BE MEGATIYVE.

THE RENAINING PORTION OF GETAGT CALCULATES THE NATURAL FREGUENCIES
(NP & WNSP), DAMPING RATIOS(2P & ZSP)s TINE TO DANP YO 1
AMPLITUDE(TI2P & T125P)s AND SETTLING TIRE(TOSP IoﬁSPl. 'I"H
SETTLING TIME IS THE TIME TO DANP 7O 53 OF THE QRIGINAL ANPLITUDE.
THE SUFFIXES P AND SP REFER T0 OSCILLATURY MGDES FOR THE NUMERATCR
OR THE DEAOMINATOR DEPENDIRG ON THE EQUATION BEIKS SOLVED o

THE SKORT PERIOD AND PHUGOID NATURAL FREQUENCIES ARE DEYERMINED BY
A RANKING OF THE MAGNITUDE GF THE REAL AND IMAGINARY PARTS CF THE
ROOTS, THE LARGER MAGNITUDE REPRESENTS TRE SHORT PERICD MODE. 1F
THERE IS CNLY CNE GSCILLATGRY MODE THIS MODE 1S REFERRED T0 AS THE
SNORT PERIOD MOOE AND THE PHUSGIO KODE NATURAL FREQUEKCY IS
PRINTED AS ZERQ. WMEN GETROT 1S USED FOR A MURERATOR POLYROMLAL
THE SHOART PERIOD INFORMATION IS PRINTED AS A NUNERATOR DSCILLATCRY
KOOE(SINCE A CUBIC I$ THE LARGEST KURMERATOR POLYNOMIAL POSSIBLE,
THERE WILL BE ONLY ONE DSCILLATORY MODE AT MOST).

13 IF{M,EQ.11G0 TO 17
IFEM.EQ.2.AN0,1,EQ.0)G0 TD 18
IFIN.EQ.. .AND. 2160 1O 21
IF{REQe3.AKD. ﬂlGa 10 22
1F(N.EQ, S.IMJ-I.EQ 2160 T0 26
IFIM.EQ.4.AND.1.EQ.0JCO TO 2T
IFIM.EQ.4.AND. 1. EQ.2)6D TO 32
W¥1=0SQRTIRCOTRI3) sRODTRL3)eROOTI(I)OR0OTILIN)
WHZ=DSCATIRCOTRL1) SRACTR( L3 +REOTIL I JOROQTINLYY
IF[WN1,GT.Wh2)GD O 14
WNSPe N2

1

>

WNSPuNNL

hx=10

MNPwMNZ

IFINX,NEL291GO IC 16
23Pa~ROCTR{11/5NSP
TC55P={2.99571/(L5P*NNSP)
TI25Pwl 65347/ (2SPONNSPL
1P=-ROCIRLIIZNND

T12P=( 6931473/ (ZPORKP)
1259-(2.995"/(1”!&‘4?)

G

16 I5P=~RCOTR{II/MNSP
TAS5Pu(2.99523/ {25 PeWNSP)
T125Pa{, 693147}/ (ZSPOUNSP)

-
o

IPm=ROOTRLLV/WNP
T105Px(2.595T) 7L 2FowNP)
T12P~{ 6931472/ L 2POUNP)
GO 1O 35

1T wisPat.0
WKkP=Q.0
15Pa~ROQTRE1)
2P20.0
T125P=.693841/25P
TOS5P=2,995T/1SP
IC5PR0,. 0
IIZP'D.D

Ga
14 IF lUABS(RGO'R( 111.GT.DABSIROOTRE2) ) IGO0 TO 19
25P=~KCDTR!
JP-—RDOVﬁl")
G0 TO 20
19 lSP--hElell)

ST/7LSP

WNSPDSURTLRCDTRII ISRCCTRAISRUOTINL)*ROOT (1) }
ISPu=RGOTR(L} kM

YIZSP--IN!)‘TIII!P‘NNSP)

TO55Pu2,995T/¢LSPoWNSP)

G0 35
22 ﬂl'RCﬂTR(I )

DO 23 Ju),3
lFlD‘BSlRCGI’R(JII-GI'-IAXIKI
1F(DABSTRCOTRIJI) }o 6T RAXIRAX=RODFRE J)
23 CONTINUE
RSAVR=ROGTR{3)
RODTRE3}=RAX
RCOTR{K)mRSAY
IF(DABStRCOTRIL) ).GT.DABSIRUDYR(2)3)CD TD 24
lSP--ROC! R{1)

llZP-.ﬁ?Jlﬁ"llP
1C5Pa2,9957/Lp
T125P0.653147/25P
I055P=2.9557/25p
GU 10 3%
26 WhPa0,0
ZP==RGOTAL3)
T12pPm,693147/20
B Rt
= RT(IDO"\H)'R 0TR{1)+ »
o COTR{L)SROOTI (L IORTOTL(L)
T125P=.593) ‘7/(15?'!!!5?'




LLLLY. YT

TOSSP#2.5957/12SPeINSP)

€0 TO 35
27 ux-nmmul

kst

00 28 J

lF(DABS(ROﬂTK(Jl)-GT.R‘!)K-J

lF(DAlS(RmTR(J)l.CY-u!llu-lm'lR(Jl
28 CONTIN

nsw-mnul

ROOTR{4)=RAX

ROQTRLR SAY

RAX=RGOTRE1)

Kel

©a 29 3

lF(DA!S(lm"‘(lJ))-‘T.RAX".-

IF(DABS(IMIR(JI 16T« RAXIRAX=RCGOTRUJ}
29 CORTINUI

ISAV-m‘I(!)

ROQIRI!\-MI

ROQTR{K)=R:

lF(DABSllmTI(I)).Cl’-DlBSIRDDlllZ“lGO 70 30

25Pa~RDOTR!

lP--RGOINzl

1

G0 10
30 253P=-ROQTRL2}
r=-ROCTRILY
31 WNSP=0.0

10 35
32 WNSPeDSCAT{ROOTRI1J*ROOTRIL)+ROOTI(12*ROOTIE1))
25p==-ROOTRL 1) /HNSP
wp=0,0
T125P=a693147/(Z5P*NNSP)
T05SPe2.9957/LISPKNSP)
IF{DABS{ROOTRI3)1.GT.0ABS(RDOTRL4)))GO TO 33
2Pe-RUOTRI3)
T0 34
33 lP--lOﬂ"(l‘l
34 T125Pw(2.995T1/7LLSPPRKRSPY
TOSSPmab93147/(2SPIMNSP)
35 RETURN
END

SUBRQUTINE FOURTH(CsROOTR,ROOT))

THIS SUBROUTINE FACTORS A FOURTH OROER POLYNGMIAL 8Y A CLOSED FORM
PROCEDYRE WHICH FORMS 2 QUADRATIC FACTORS AND THEN CALLS A
QUADRAYIC FACTORING SUBRGUTINE, QUAD, TO UBTAIN THE FOUR RODTS.
THE PROCEDURE WAS TAKER FROM *INTRODUCTION TO THE THECRY OF

EQUATIONS® BY N.B. CONKNRIGHT.

IKPLICET REAL

€ A=H, Q-

REALeS ns.ln'.nu.n.nou.m.nm.ws.us.nms.uun.xc.nmr KKK
DIMENSION CS5)eKC{4}2QUFLL3),QUF213),RR1(2],RR2L2)9RI1E2)4RIZ(2},4R
$00TR110) +RODT1410)
PaCi&1/CLS)
Q=C3)/C(S1
ReCU2)/CI5)
S=CL13/CL30

Se (.
I‘KC'().O‘KC({I.IC(ZI-KCI JOKCE3) 1/79.09KCE4)2KCL4)

SRCm12,00XCAIBIFXCIIIORCIII-FOOKCI410KCEI) #KCL2)227. O0KCLA) #KLl4)

SXCLLI1 /(2T 0OKC LA 4K (41 #KC(4D1
RAD®GKCPCKC +4 «0 $HKCHHKCORXC
1FIRAD.LT.0.01G0 10 3
UKC{ [=GKCHDSTRTIGKL SSKC #4 L OSKKL SHKCHHKC )1 /2.0)
RTUKCeDABSIURC}®0.333333333333333
UXC=DSIGNIRTUKC X C)

VKCo=HKC/URS
KRODQTeUAL+VKC-KCI3)/¢3.00RCL4))

1 ©sDSQRTIKROCTIKROOT-S)
AvDSQRT{2.0KROOT+PeP*.25-Q)
TEST=2,09A08¢R~KROQT#P
lFI!Es‘l.LE-.OHG\‘- ™2

IEST'Z.O'I'BOR'WOT'P
IFUTEST,LE..01)60 T0 2
Am=A

B8
TESTa2,0*A0BeR-KRODT#P
lf(:Esl’.L «e0L1GC TD 2
A

2 QUFItY)=1.0
QUF2(3])=1.0
QUFL(2)weSeP-A
QUF2L21es50P 04
QUF1(1}=KR00T-B
QUF2{11=KRQOT+8
CALL ﬂUADlﬂUfl'ul.llll
ROOTREL}=RALL)
RODTR(ZI'“"Z’
ROOTIC1)=RIR(1)
RDATI42)=RIZ(2}
CALL QUADIQUFZ,RR2,K12)
ROOTRLI)=RR2E1Y
ROOTR(4)»RR242)
RCOTI{3)=R12(1}
ROOTEL4)=RI2(2}
RETURN
3 THETAWDARCOS1~GRLS £2.09DSQRT {~HXCOHKCY
THI=THETA/3.0 Cruxcai)

KROOT & Z.085C0S(THI)SOSQRTI-HKC] ~ KCL31/L3.00KCiA)

6o T0 1
XD

388

FRENTF ST

LLLL LI

SUBRQUTINE CUBE(“.XRrX"
IMPLLCLT REAL#S{A-t,0-.
DIKENSIOM CC(&)'RRIBI'R“J).XI(JI'KI‘3I

Tul$ SUBROUTINE FACTORS
PROCEDURE GIVER IN *INT,
CONXWRIGHT AND HODIFIED B
TABLES' BY CHEMICAL RUBBER COMPANY.

He(3,09CC4)9CC (2)—CCT3I0CC13) 1/ {9.09CC{4) 0CC
G-lZ-O'CCl’I'CC(B)'CCIJI-?.D'CC(QI.CCIJD'CCIZ
L1117 (27.09CCL4)oCCiadoCLis))
RADSGOG4 JOHOHMH
IF(RAD.LT+0.0)GO 70 3
UROOTJI(—WOSQRT(G'GO&.U'N‘N'N”IZ .0
IF(URGOT3+LT+0.01G0 10 3
URODY—UIUBYZ".!13333333333333
60 TO 2
1 URQOT=(~4ROOT317¢.333323333232333
URCDT=-URCOT
2 VROOT=~H/URCOT
RR[11=UROOT+VROOT
RR{2) =~ LURDCT+YRIOTI/ 2.0
RR(’I--(URBCTOVWTIIZ-O
RI(1)=0.0
RLE2 N = (URCAT-VROGCT 18 (866025403784}
RI (3)==(UROCT-VRCOT)#{.666025403784)
XR{1I=RRE1)-CC(IV/I3.09CCL4))
XR(2)=2R(2)-CC(3}/13,09CCL4))
XRE3ISRRU3I-TCADI/ 13, 00CC16))Y
xI1

XIe2.
X3 I=RI()
GG TO 4

3 THETA=DARCOS(-G/(2.09DSQRT{~HeHOK} I )
TH3=THETA/3.0

ARC(L «CoDLOSE THI J*DSQRT {=H)
XRIZ) #2.090C0S{ TH342.0943951023921 #DSQRTI-H)
XR(3)m2.0¢0C0S{TM3+4.188790204784)*DSARTI-H)
SUB=CCI{3I/(3.00CCL4N)
XRi1}=XR11)=5uB
XR{2)=XR{2) -5UB
XR{3ID=XR{3}=-SUB
& RETURN

A THIRD CROER PCLYMONIAL BY A CLOSED FORM
ADDUCTIOH TO THE THEORY OF EQUATIDHS! £Y
Y THE PROCEDURE GIVEK IN ¢STANDARD MATH

{44}
1¢27.00CCE4)0CC{4)0CC

e - e e e e
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SUBRGUTINE QUADICOF,REsRIN)

THIS SUBRCUTINE FACTORS A SECOND GROER POLYNOMIAL BY USING THE

QUAGRATIC FOANULA.

IRPLICIT REALEBIA-K,D-1)

OIMENSION CCF(3),RE(2)sRINE2}
DlS'CUFIZl'mF(ZI-h.OOMHHOtﬂHl)
IFLOLS,LT.0.01 GO TQ
lE(lI-(-CEHZIODSORNDISHIRZ.GOCDHJI)
RE12)=[=CCF2)=DSQRT{DIS) )/ 12.00C0F(3))
RIK{1)v0.0

Rlllzl-ﬂ-

[~ {

lElll--COF(ZlI(!.O'COF(!))
RE(ZjaRE(L

ulnul-l-nscnu-msy 1/12.000CF(3 )}
RINI2)w[DSQRT(=DIS))/12.09C0F13))
RETURN

END

SUBRQUTINE SINSLEICOFF ,RO0T,ROCTI
THIS SUBRCUTINE FACTORS A FIRST CROER POLYNGNIAL.

IXPLICIT REAL®S{A~H,0~1)
DINENSICN RCOI’IH-COFHZ);P.DDHH)
ROOT{11u-COFF{1)JCOFFL2
ROQTI{LI=0.0

RETURN

EXD

-
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SUBRUOUTINE EQDE{LyJJeKWF)

THIS IS A SUBRQUTINE WHICH CALCULATES TKE INFORMATION KEEDED To
CONSTRUCT A BOUE PLOT ONCE THE NUNERATAR ANO DERGAINATOR
THE INFORMATION 1S TRANSFERRED TO

POLYNCMIALS HAVE BEEN FACTORED.

THE WAINLINE BY USING A “COMMONY STATEMENT. THE FREQUENCIES ARE

GIVEN BCYH IN RADIANS PER SECOND AND CYCLES PER SECOND.
AMPLITUDE RATIQ IS GIVEN BOTH AS A PURE WUMBER AND IN DECIBELS.

THE PHASE ANGLE IS GIVEN 8GrHd IN GEGREES AND RAOLANS.
IMPLICIT REAL#B{A-H,0-2)

THE

REAL®S MS 1YY, HU+HK, DU HQ 2 HINs NUS s HAS s NTHS e KSATN 1 KC o KROOT 4 KKK 4 KDy
SXNoNWSyKOSAVE,KNSAVE

COXMON

CORMON

DIMENSION XKX{21)

00 9 MelsXWF

AKPD=1.0

KC=1.0

PMSEDIDAD

80 4 Jelst
H-IRRDIJ).EQ.D-D)GD 101

o T
MPD-AHPDODABS(IFINI-RIDIJH
TF{NF (M) ~RIC(S).LTL0.0)GO TO 2
PHASEDaPHASED-3. 1415926536/2.0

GO T0 4
2 PHASED=PHASED+3.141592653672.0
GO 10 4
3 AMPO~DSQRTA[ (-MFIH}+RIDIIII/RADIII I we2+1,0)%ANPD
PHASED=-(DATANC{=RID(S)+WFIH}I/{=RRO(3) 1)) +PHASED
XDSAVEaKD
XO=-RRO{J}*K0
LFEKDSAVESKDo1, T <0, 01 PHASED®"PHASEC~3. 1415926536
4% CONTINUE
PHASEN=0.0
RNeKGALH
ANPN=1.O
8 Inledy
IFIRRNL1),EQ.0.01G0 TO 5
cD J0 ?
5 AHPNoANPNOLABS(WF{M)=RIN(I)}
lF(IFIH)-RH‘l)l LT.D-D]GO 10 6
/2.0
coT0 8
& SEN-3.141S 12.0
6o T7G 8
7 ARPNSDSQRTS( (=WFIH) +RINITIIZRRNI 1)) 692¢1,010AMPN
PHASENeCATANC(-RINCI}+MF{M) 1/ U-RRNL1) ) J4PHASEN
KNSAVE=KN
KN=-ARN{ 119KN
1Ft ot Ta0.01 31415 5
8 CONTINUE
KKK ) =XN/KO
AMPRM}=TABS(KKKIN)) ¢ ANPH/AHPD
AMPROBINI©20.0°DLOGLO{AMPRIN) )
PHASECH) mPHASED PHASEN
PHOEGIN)mpPHASEIMINST 295779513
WCYCLEINI=WF(H3/£2,0%3,14159265356)
% CONTINUE
RETURN
No

MNSPs2SPeT12SP TOSSPeWNP ¢ ZP(T12P« TOSP (RFL21 14 RRD(10) «RRNE
4101 4RIDILO) ,RINC1I0), ANPRI21) sPHASE( 220 yACC o MCYCLE( 22 ) ANPRDB{21) P
SHOEGL211,KGALH
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LONGITUDINAL OUTPUT

cosnssonae

LOMEITUOINAL STABILITY DERIVATIVES

LATERAL OUTPUT

LATEAAL STABILEIY DERIVATIVES

CL = 0.30900 €0 * 0.011100 (4] 00 A = Qe123400 <o ~0,300000 cie 0.009000 CHB = 04044400 Cy? = =0,0)1300 =0,470800 CHP e +0,029200
LAA = =0,385)00 €LG = 2.918000 oo 00 cLba 0.0 CYA = 0.210000 CLR = 0.,093%0 CHA = =0,099200
CHOA @ ©3,237000  CTRPN = 0,0 G« 0.0 [
b AMEPLANE 3cy
PIRTENENT AIAPLANE CHARACTRAISTICS .
.
3 . RHO = 0,002630  WING AREA =174,000000 MASS & 6243000G0  CoCLSICANMA} = 32,00000
RHO = 0.002088  WINO ANRA #174,000000  AASS = 82,300000  GOLOMGAMAA) = DX.200000 CO3IKL) « O = 0.0 . U = 219.0)00  CHOAD = 4,056000 SPAN « 33,4300  LeSlnlGAMAl = 0,0
U #219,000000  CHORD = A4.830000 IYY = 1346,0000 GeSIMIGANMA} = 0,0 $IX(XL) « 0,061030 . 13X = 9490000 " 0.0 12 & 194740000
.
. . . .
. RRIPORSL TO CLLVATOA DIFLLCTION . . RESPLASE TO AUODER DEALLCTION .
. . . .
. . . .
® CLIN = 0,4260C0 COIN = 0.039800 CHIN = -1,383000 Kel ACC » 0400010000 . * CYie = 0,187400 CLIN @ 0.014700 CNIN = <0.083000 Kel ALC - 0400010000 .
. . . .
. .
. POLYMORIAL COLIFICIIATS FOR THE DANONINATON AXD WUNLAATOA .
. .
. . .
.05t - 1009 LT $.2543 O = 362MNL 0% = 127 o1} - 161783 o . POLYNOALAL COTPFICITNTS FOA THE DEMCHINAIOR AND WURLAMTIOA
. . >
b RUSEA) = =243 WD) = ~3a,T00 huil2) = 2947408 KUSILY = 202003328 o .
. . e 083 . 140000 uster = 13,0017 0313} = 28,0037 0312 = 1AL ostl) - L3937
- NABIA) = -0, 2024 NA3ID) - 39,3490 HASLT) = ~LO1D NASILE = =l.7038 o .
. . . ASts} 2 0.0009 LTI TR Y PS 111 ) NI2E s 120.9473 NS(LL = =2 97
. ATHSI3) = «39,3087 NTHSE2) = «B2.337) ATHSIL) = =3.4330 o .
. . . NPRIIA) = 4lT924 APHILI) = <21.8307 HPHLIZE = ~209,0981 HPHILLY = 0.0
. LTI Y 1 1Y) [T TEVRRETTTTS P 133 HNSI2) © =287.7432 HYSI1) = =373.0933 o .
. . . APSULAL = =10.292% NPSLLM = =1)0.027% LI Le T RE I TIX T TY WELIL) = =34,3408
.
.
3
. 10LUTIOK 1R U WARLATLUR
. putsih bttt
.
.
. VENCAIRATOR AGOTS
.
. SEONELN = =0.0LD5Y ¢J o
. RLOFIZ) = =0.01339 . 12 .
. 3 s =4, 07Ti8 ¢ T3 .
. AT = =40T716 3 4.3681) . 3QLUTION FOR STORSLIP VARIATION
. . ammemmmcnacmatma e sn
. .
. MATURAL PREQ DANPING RATIO TINE PUR 1/2 OANPING SETTLING TNt .
. DANPED  CANPEL . OLNGRIKATOA ADOTS
. SHORT FIAILO 3.97310  4.30013 [NTI [0 [ R0} .
. . R00T(3} 4 e3arse
. PHUGOLD c.aace  Caleolo Q.01323 310150 220.48433 . ~eaTI2) 3.2039%
. . ROOIL3Y * 00
. . acoT(s) 9 00
. .
. HUNIRATOR 400TS .
. . DARPING £ATIO  TIRE POA 1/2 DANPING SEIILING TIng
. Agutil) = 11323 % 0.0 . [l 0
. AT « 07 0.0 . DUTCH AOLL 3.3430 94C  0.20032 405 100817
. "’oTid) = 23 *d 0.0 .
. . MMEAATOR ROOTS
. .
. NATUAAL PR DAMPING RATIO  TIRE FOR /2 PANPING SATTLING TINE . A1) 200789 ¢4 0.0
. UADANPED  CARPID . ®GTI2) o =119.41020 .0
. €0 TeA192 B.09742 042103 . 2O} = 0.02275 ¢J 0.0
. .
. €0 €0 331} 9.00104 0433033 .
. . 8004 PLOT tRFORMATION
.
M . PRAQUENCT AFPLLTUOL AAtlo
. 8008 PLOT INFORRATICN . xa0/58C creLesssec ot orcise
. 0,01000 0408159 3
PAEQUENCY ANPLITUDE RATIO . 410009 1
. RAD/IEC [A13 o . 00000 2
. . 23013 T
o . 3.02049
o . Jo3oavd
o . . 75142 o
. . 470022
- . 10 T
. . 9. VIIY8 135.91349 3.
. . L ] 139.13403 G
3 .
tee 93, 3104 .
t ~$0,0337 ¢




TIME RESPONSE PROGRAM

The Time response program is a program which will give a tabulated
output of a transfer function due to an impulse or a step input by taking the
inverse Laplace transform of the transfer function. When using This program
there are two important restrictions:

1) If an impulse is used the order of the numerator
polynomial must be lower than the order of the
denominator polynomial.

2) If a step is used the order of the numerator
polynomial must be less than or equal to the
order of the denominator polynomial.

Use of the program requires the input of the variables listed below:
MN ~ order of the numerator poiynomial

MD - order of the denominator polynomial

ITYPE -~ variable which indicates the type of response desired
ITYPE = 0 is the signal for an impuise response
ITYPE = 1 is the signal for a step response
GAIND - coefficient of the highest order term in the denominator polynomial
FORCE ~ the magnitude of the input (If FORCE is 3.0 then the response will
correspond to a 3° control surface input)
NS(I) -~ coefficients of the numerator polynomial beginning with the lowest
ordered term
gggl?é:;‘}fhe real and imaginary parts of the roots to the denominator

polynomial

The output variables are defined in the program, and a sample output has
been included at the end of the program. It should be noted that all the
pertinent input information needed for this program has been included as
output information in both the Longitudinal and Lateral programs preceding
this program.
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INPLLICIT REAL®4 (N)
DIMENSION NSC10),05( lOl.lUﬂTlllol,ROOT“IOI.GJYPI.IT(IOGOI.I( 1000)
1 READ(1,100)KN.KD»1 TYPE (GAIND¢FORCE
100 FORRATL3LL,2F15.7)
IFCMN.EQ.OICALL EXIT
AN1eNNel
READLL,301) (NSTX)eI=1¢KNL)D
READ{1s101} CROOTRU1) yROOTELI R 1m1,HO)
0% FORMATISFIS.7)
TFUITYPE.EQ.11C0 TO 2
lR[TEl!.ZOIlFDﬁCE
AT(91%9/#//710X," TIKE RESPONSE FOR AN IMPULSE INPUT =*,FT.2,°

2 MRITE(3,2021FCRCE
202 FORMAT{1%,///710X,* TIKE RESPONSE fOR A STEP INPUT =*,FT7.2." DEGR
SEES* )

w

WRITE(3,203)

203 FORMAT(////10Xe*THE COEFFICIENTS OF THE WUKERATOR*/}
WRITE(3,2040{14NS(L) o Ta1 MNLD

204 FORMATLLCK) *HSU® L1 % In?,F15.71

WRITE(3,205)

205 FORMAT(///710X¢*THE RODTS OF THE DENGMINATOR®/)
WRITE(3,208 )14 ROOTRCI) 4RODTL{1) o Iw1,4ND}

2086 FORMATII0X¢ ROQTL®oL14?)w* F15.T. e J HF15.7)

GAIHDG=CAIND/FORLE

1FUITYPELEQ.1IGO TO &

CALL TYME{OUTPUT,Ty10,NS (KNI 2ROOTR s RCOT S ¢ KD ¢ GALIKOG, ICODE)

[ R{E]

>

4 KD=ND+1
ROOTRIND)=0,00
ROOTI{ND}w0.0
CALL TYME(QUTPUTT4109NS¢RN1oROOTR,ROOT Lo MDs GAINDG, 1CODED
nlttu.zonlcunz
207 FORMATILH1e/ E = *.12)

1coD)
lFllCOﬂE.EO.llll"El!.zOl
208 FORNAT{/710X»*THE CONPLEX PART OF THE OUTPUT VECTOR BECAME SIGNIF]
SCANT'

IFLICODELEQ.2)MRITE( 3,209}

209 FORMATU/710X»*MULTIPLE ROOTS ENCOUNTERED®)
IFCICODELEQ.IINRITEI3,210)

210 FO”A‘(/IXOX"!‘D ENTRY = CHECK POLYXOXINAL CRDERS OF TRANSFER FUN
T

ION!

IFHCODE.NE-OIGO T0 1

WRIVE{3,211)
211 FORMATLZZ77/16Xe*TIRE® 419X *OUTPUT}
WRITE(Y, 21204 TL 1), OSTPUTLL) s I=2s 1D}
FORMATUZ 14X FTe2414X+F15.T)
60 701
END

>4
~

SUBROUTINE CPVALIRESsARG,X,IOIRX)
CORPLEX®S RES:ARG

DINERSION X120)

RES=(04s0.3

J=1DIRX

IFGI)3e3,2

RES=RES®ARG#X{J)

N

")
=
d
2

PURPOSE:

THE PURPDSE OF THIS SUSROUTINE IS TO DETERMINE THE TIME
RESPONSE OF AN INPUT TO A TRANSFER FUNCTION BY TAKING THE
INVERSE LAPLACE TRANSFORM.

KETHODS
THE RETHOD OF RESIDUES IS USED TQ GEMERATE THE TIKE RESPONSES,

VARTABLES:

OUTPUT — VECTOR OF CALCULATED RESPONCE AMPLITUDE VALUES
¥ = VECTOR OF SEQUENTIAL TIME VALUES DIRECTLY RELATED TO GUIPUT
10 = NUNBER OF QUTPUT VALUES (CALCULATED)
NG -~ VECTOR OF MINERATGR COEFFICIENTS
ING — DIMENSION OF THE NUMERATOR COEFFICIENTS
ROOTR ~ VECTOT OF REAL PARTS OF THE RDOTS
lon‘l = VECTGR OF IMAGINARY PARTS DF THE ROOTS
DEHL ~ NUMBER OF ROOTS (ORDER OF THE OENCMINATOR}
CAKNDG ~ GAIN OF THE DENCNINATOR
ICOBE - RETURN CODE VARIABLE
ICODE=Q INPLIES NORMAL EXECUTION
1CODE=1 IIPLIES THAT THE COMPLEX PARY OF THE QUTFUT
OR BECAME SIGNIFICANT.
1CODE=2 IIPLIES THAT N‘ULTIPLE ROOTS WERE ENCOUNTERED
HE DENOMINATOR.
1CODE=) lNPLlES THAT THE ORDER OF THE DENOMINATOR WAS
T CREAVER THAN THE ORDER OF THE NUMERATOR.

SUBROUTINES CALLEC:
CPVAL — COXPLEX EVALUATION OF A PGLYNGMIAL

RERARKST

THIS SUBROUTIKE 1 HE TIME OF A
GENERAL OUTPUT HINCHON xﬂls) - xus)cls). IN THES
E'Al.ull’lg),l THQ.EIIPORI"NT ASSUMPTICNS ARE KA
ORDER OF THE DCKONIMATOR OF 'IHE
:fs;N:EBUTPUT FUNCTION. QUTPLT FCTION
LARGER THAM THE OROER OF THE WUMERATOR
2) NATIPLE ROOTS OF THE DEMONINATOR MAY KOT EXIST.

REFERENCES

{:Ilggucnm T0 AUTOMATIC CONTROL SYSTENS - ROBERT N. CLARK

noo 'innnnnnnnnnﬂnﬂﬂnnﬂnnnhnnnnnnnﬂnﬂnnnnnnﬂﬂﬂnnﬂnnnﬂnﬂnnnnnnﬂnr on
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SUBROUTINE TYME{OUTPUT 4T, §0yNG, ING»ROGTR(ROOTT , 10GH1 4 GAINOG.1COPE)
INPLICIT COKPLEX®S ‘CvlhlEALtb (1.1}

CONPLEX®8 P»S,CUT,0UT]

OIMEKSION P(I.Ol.N!IOI.KUOI:OUHIDOGI.OU\'PU!(mOOI'ﬂWool.

3 ROOTR{10),RO0OT1410)

CHECK FOR BAD ENTRY
IFLIDGMLLLT.ING) 60 10 9
CHECK FOR MULTIPLE ROOTS

00 1 I=1,0GNML
RRP1=ROOTRLI}+.00L
RARML=RCOTR{ [}-.001
RIP1=ROOTI41)+.00)
RKIM1=ROCTI(I-.001
£0 1 J=1,10GA1
IF(1.£Q.J) GO 10 21
RRJ=ROGTRES)

AIISROCTICIY
lFlRRHl LT RRJLAND.RRPLGT «RRJIANDSRINL LT .RIJLANDRIPL.6TLRIID

$60 T
1 COKT IHUE
ICODEwO

DETERMINE THAX

SHALL®1.E6

TOEL=.1

MAXsTDEL #1000

TRODTw6./MAX

00 2 I=1.l0GM1

ABSR®ABS (ROOTR(1))
IF(ABSR.LT,TROOT) GO T0 2
IF{ABSR.LT.SHALL) SMALLSABSR
CONTINUE

TRAX® 6o /SHALL

IF(INAX.GY.W 3} THAX*99.

C0 3 I=1,1DGN.
v(n-cunx(nmmu).noonmp

~

w

DETERRINE THE K'S
Co 5 J=1,i0GM1
S=P(
CALL CPVALLKNUN,S,HG, ING)
CO 4 L=1,106F1

IF{L.£Q.J) 60 TO 4
KJ-KJIIS-P(LH

>

CONT.
l(Jl-lJ‘thl/GAlNDG
CONT 1KY

DETERMINE THE TIME RESPONSE

w

10=0
Ti=-TDEL
10=10+1
cuTL=(O.
T1=T1+70
Co 7 J=1,]0GAL

IF(ROOTR(J) #T1.LT.~15.) GO TO 7

[

CUT1=0UTL4K (J)*CEXP(T14PLJI))
CONTINUE

CUTPUT(IONI=REAL{ILUTY)

UHRE AL=AIRAGICUT1)
IFIABSIUNREAL) .GT..001) ICOOE=)
TLI04=T1

lF(ll.L'l’-"lAXl G0 T0 6

~

¢ @
ama
oxa
ace
nEP3
)
SERT

SAMPLE QUTPUT

TINE RESPONSE FOR AN TMPULSE INPUT = 1.00 DEGREES

THE COEFFICIENTS OF THE NUNMERATOR

HS{l)= 48.0000000
HS{2 72.0000000
HS(3)= 24.0000000

THE ROUTS OF THE DENOMINATOR

R00T{11= ~1.0000000 ¢ S 1.7320490
ROOTi2)= ~3.0000000 ¢ J 0.0
ROOT(3)= -4.0000000 + 4 0.0
ROOT(4)= -1.0000000 + J -1.7320490
1CODE = o

TInE 0UTPUT

0.0 -0.0000030

0.10 1.7742138

0.20 2.6069489

0.30 2.0440970

0.40 2.7168045

0.30 2.384169¢
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